Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biomater ; 2023: 2227509, 2023.
Article in English | MEDLINE | ID: mdl-36909982

ABSTRACT

The present study outlines the evaluation of textile materials that are currently in the market for cell culture applications. By using normal LaserJet printing techniques, we created the substrates, which were then characterized physicochemically and biologically. In particular, (i) we found that the weave pattern and (ii) the chemical nature of the textiles significantly influenced the behaviour of the cells. Textiles with closely knitted fibers and cell adhesion motifs, exhibited better cell adhesion and proliferation over a period of 7 days. All the substrates supported good viability of cells (>80%). We believe that these aspects make commercially available textiles as a potential candidate for large-scale culture of adherent cells.

2.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770900

ABSTRACT

In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled.


Subject(s)
Edible Insects , Neuropeptides , Animals , Humans , Edible Insects/metabolism , Peptides/pharmacology , Peptides/metabolism , Antioxidants/pharmacology , Insecta/metabolism , Agriculture
3.
Front Cell Infect Microbiol ; 12: 987683, 2022.
Article in English | MEDLINE | ID: mdl-36250046

ABSTRACT

Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer's disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Gingipain Cysteine Endopeptidases , Humans , Hydrolases , Periodontitis/microbiology , Protein-Arginine Deiminases/metabolism , Virulence Factors
4.
Molecules ; 27(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35744776

ABSTRACT

Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation.


Subject(s)
Acanthaceae , Antioxidants , Acanthaceae/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Liver , Metabolomics/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves , Reactive Oxygen Species
5.
Saudi J Biol Sci ; 29(4): 2573-2581, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531186

ABSTRACT

Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis.

6.
Antioxidants (Basel) ; 10(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34829693

ABSTRACT

Corn silk (CS) is an agro-by-product from corn cultivation. It is used in folk medicines in some countries, besides being commercialized as health-promoting supplements and beverages. Unlike CS-derived natural products, their bioactive peptides, particularly antioxidant peptides, are understudied. This study aimed to purify, identify and characterize antioxidant peptides from trypsin-hydrolyzed CS proteins. Purification was accomplished by membrane ultrafiltration, gel filtration chromatography, and strong-cation-exchange solid-phase extraction, guided by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS•+) scavenging, hydrogen peroxide scavenging, and lipid peroxidation inhibition assays. De novo sequencing identified 29 peptides (6-14 residues; 633-1518 Da). The peptides consisted of 33-86% hydrophobic and 10-67% basic residues. Molecular docking found MCFHHHFHK, VHFNKGKKR, and PVVWAAKR having the strongest affinity (-4.7 to -4.8 kcal/mol) to ABTS•+, via hydrogen bonds and hydrophobic interactions. Potential cellular mechanisms of the peptides were supported by their interactions with modulators of intracellular oxidant status: Kelch-like ECH-associated protein 1, myeloperoxidase, and xanthine oxidase. NDGPSR (Asn-Asp-Gly-Pro-Ser-Arg), the most promising peptide, showed stable binding to all three cellular targets, besides exhibiting low toxicity, low allergenicity, and cell-penetrating potential. Overall, CS peptides have potential application as natural antioxidant additives and functional food ingredients.

7.
Trop Life Sci Res ; 32(2): 45-63, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34367514

ABSTRACT

Clove (Syzygium aromaticum) is an exotic culinary spice that has been used for centuries due to its known antimicrobial and antioxidant properties. The main aim of this study is to compare the antimicrobial activity and antioxidant capacity of clove ethanolic extract (CEE) and commercial clove essential oil (CEO) at a standardised eugenol content. Disk diffusion assay showed that CEE (2000 µg) was able to exhibit broad-spectrum inhibition against both Gram negative and Gram positive Urinary Tract Infections (UTIs)-causing pathogens: Proteus mirabilis (19.7 ± 0.6 mm) > Staphylococcus epidermidis (18 mm) > Staphylococcus aureus (14.7 ± 0.6 mm) > Escherichia coli (12.7 ± 0.6 mm) > Klebsiella pneumoniae (12.3 ± 0.6 mm) (according to the size of inhibition zone). Interestingly, the comparison between CEE and commercial CEO revealed that the former demonstrated stronger antimicrobial and antioxidative properties at similar eugenol concentration. The EC50 of DPPH (1,1-diphenyl-2-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and reducing power assay for CEE were determined as 0.037 mg/mL, 0.68 mg/mL and 0.44 mg/mL, respectively. Besides eugenol, High Performance Liquid Chromatography (HPLC) analyses identified the presence of kaempferol, gallic acid and catechin in CEE. As a conclusion, we concluded that there was a possible synergistic effect between eugenol and the others active compounds especially kaempferol which led to the observed bioactivities in CEE.


Bunga cengkih (Syzygium aromaticum) merupakan salah satu rempah masakan eksotik yang telah digunakan berabad-abad untuk kegunaan antimikrob dan antioksidan. Matlamat utama kajian ini adalah untuk membandingkan aktiviti antimikrob dan kapasiti antioksidan di antara ekstrak etanol bunga cengkih (CEE) dan minyak pati bunga cengkih komersial (CEO) dengan kandungan eugenol yang sama. Pencerakinan resapan agar menunjukkan CEE mempunyai perencatan spektrum yang luas terhadap bakteria Gram negatif dan Gram positif, patogen penyebab jangkitan saluran kencing: Proteus mirabilis (19.7 ± 0.6 mm) > Staphylococcus epidermidis (18 mm) > Staphylococcus aureus (14.7 ± 0.6 mm) > Escherichia coli (12.7 ± 0.6 mm) > Klebsiella pneumoniae (12.3 ± 0.6 mm) (menurut saiz zon perencatan). Yang menarik, perbandingan CEE dan CEO mendedahkan bahawa CEE menunjukkan aktiviti antibakteria yang kuat. Hapus-sisa radikal bebas DPPH dan ABTS serta aktiviti kuasa redaksi untuk rempah ini telah dibandingkan dengan CEO. Keputusan menunjukkan aktiviti antioksidan dalam CEE adalah lebih kuat. EC50 DPPH, ABTS dan pencerakinan kuasa redaksi untuk CEE masing-masing telah ditentukan sebagai 0.037 mg/mL, 0.68 mg/mL and 0.44 mg/mL. Kompaun aktif (eugenol dan lainlain kompaun fenolik) merupakan kompaun yang terkandung dalam CEE. Analisis HPLC mengkuantitikan kehadiran kaempferol, asid galik dan katechin. Kesimpulannya, kita menjangkakan kemungkinan terdapat kesan sinergi di antara eugenol dengan kompaun fenolik lain terutamanya kaempferol yang berupaya meningkatkan aktiviti CEE berbanding dengan CEO.

8.
Mater Sci Eng C Mater Biol Appl ; 123: 112005, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812625

ABSTRACT

Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.


Subject(s)
Bioprinting , Cartilage , Printing, Three-Dimensional , Stem Cells , Tissue Engineering
9.
Food Res Int ; 64: 387-395, 2014 Oct.
Article in English | MEDLINE | ID: mdl-30011665

ABSTRACT

Extract from papaya leaves, a waste material from fruit farms in Malaysia was previously reported to possess remarkable antioxidative activities. In this study, papaya leaf extract was separated into fractions of different polarities [petroleum ether (PE), ethyl acetate (EA), n-butanol (NB) and water (W) fractions]. The aim of this research was to determine the most active fraction in terms of its chemopreventive effects towards oxidative stress and the chemical constituents involved. The cytoprotective nature of the papaya fractions was observed against t-BOOH-induced oxidative stress on HepG2 liver cell line. ROS assay indicated that only PE and EA effectively reduced the increment of radical due to the pro-oxidant, t-BOOH. Nevertheless, PE was a stronger ROS scavenger by demonstrating ROS reducing activity in a dose-dependent manner to the basal level. This fraction was also found to inhibit cell death caused by t-BOOH toxicity, attenuating lactate dehydrogenase enzyme leakage by more than 90% (p<0.05). In addition, gene expression of phase II antioxidant enzymes (hmox-1 and nqo-1) and their transcription factor (nrf-2) were shown to be upregulated upon PE treatment during a time-course study. A GC-MS fingerprint of the active fraction was subsequently obtained with standardization using the marker compound; α-tocopherol, a well known antioxidant. However, this pure compound was not as effective as its corresponding PE concentrations in ROS reduction. Hence, PE of papaya leaf extract was a strong antioxidant and cytoprotectant with tremendous potential to be harnessed into the next therapeutic remedy against oxidative stress of the liver.

SELECTION OF CITATIONS
SEARCH DETAIL
...