Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biol Reprod ; 102(2): 339-347, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31566218

ABSTRACT

Astaxanthin (AST), a natural antioxidant carotenoid, has been shown to exert anti-inflammatory effects. However, to our knowledge, no study has specifically addressed the potential protective effects of AST against bovine endometritis. The purpose of this study was to examine whether treatment with AST could protect endometrial epithelial cells against lipopolysaccharide (LPS)-induced inflammatory injury. Treatment of bovine endometrial (BEND) epithelial cell line with AST reduced LPS-induced production of interleukin-6 and tumor necrosis factor-alpha, increased the cellular activity of superoxide dismutase and catalase, decreased the proportion of apoptotic cells, and promoted the production of insulin-like growth factor and epithelial growth factor. The effects of AST were mediated through the downregulation of B-cell lymphoma 2 (Bcl-2) associated X, apoptosis regulator (Bax), and cleaved caspase-3 and through the upregulation of Bcl-2. Moreover, AST significantly increased the expression of the tight junction proteins (TJP) claudin, cadherin-1, and TJP1, which play an essential role in the maintenance of host endometrial defense barrier against pathogen infection. Collectively, these results demonstrated that treatment with AST protected against oxidative stress, prevented cell apoptosis, promoted BEND cells viability, and increased the production of growth factors, in addition to activating the endometrial defense barrier. Therefore, AST is a promising therapeutic agent for the prevention and treatment of endometritis. This finding is of utmost importance in the present times when the excessive use of antibiotics has resulted in the development of antibiotic-resistant bacteria.


Subject(s)
Endometrium/drug effects , Epithelial Cells/drug effects , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Protective Agents/pharmacology , Animals , Apoptosis/drug effects , Catalase/metabolism , Cattle , Cell Survival/drug effects , Endometrium/metabolism , Epithelial Cells/metabolism , Female , Interleukin-6/metabolism , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Xanthophylls/pharmacology
2.
Anim Biotechnol ; 31(5): 391-396, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31060421

ABSTRACT

Simvastatin (SIM) is a widely used anticholesterolemic drug that blocks the biosynthesis of cholesterol. However, SIM also has pleiotropic effects on 3-hydroxy-3-methyglutary-CoA reductase (HMGR), cholesteryl ester transfer protein (CETP), and lipoprotein lipase (LPL), which are important genes in the cholesterol biosynthesis and transport processes. We investigated the effects of different concentrations of SIM on the mRNA expression of these genes in bovine intramuscular and subcutaneous adipocytes from the longissimus dorsi muscle and subcutaneous fat tissues of Luxi Yellow cattle. The results showed that SIM treatment showed dose-dependent toxicity on normal adipose cells, but no effect on cell proliferation. SIM decreased HMGR expression in a dose-dependent manner but showed no significant effect on CETP and LPL expression. Thus, SIM may lower the cholesterol content by decreasing the HMGR expression level, but CETP and LPL may be regulated through other mechanisms, which require further investigation.


Subject(s)
Adipocytes , Cell Proliferation/drug effects , Muscle, Skeletal , Simvastatin/toxicity , Subcutaneous Fat , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cattle , Cholesterol/metabolism , Female , Gene Expression/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Subcutaneous Fat/cytology , Subcutaneous Fat/drug effects
3.
Hum Reprod ; 32(8): 1583-1597, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28591825

ABSTRACT

STUDY QUESTION: What are the mechanisms by which corticotrophin-releasing hormone (CRH) and corticosterone impair the development of preimplantation embryos in the oviduct. SUMMARY ANSWER: CRH and corticosterone do not affect preimplantation embryos directly, but impair their development indirectly by triggering apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. WHAT IS KNOWN ALREADY: Studies report that stress impairs embryo development with facilitated secretion of CRH and glucocorticoids. Although an in vivo study demonstrated that preimplantation stress impaired embryo development in conjunction with oviductal apoptosis and activation of the Fas system, whether CRH or glucocorticoids damage embryos directly or indirectly by way of oviductal cells remains to be clarified. STUDY DESIGN, SIZE, DURATION: Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in Fas ligand in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female mice were used 8-10 weeks after birth. PARTICIPANTS/MATERIALS, SETTING, METHODS: While some female mice were killed 48 h after being injected with equine CG to collect oviducts and prepare OECs, others were killed to recover zygotes after mating with males following superovulation with eCG and hCG. The zygotes obtained were cultured with or without CRH or corticosterone (CRH/Cort) either in Chatot-Ziomek-Bavister (CZB) medium with or without OECs or in conditioned medium (CM) conditioned with OECs pretreated or not with CRH/Cort. Preimplantation development, levels of redox potential and apoptosis, and expression of CRH receptor 1 (CRHR1), glucocorticoid receptor (GR), Fas and 11ß-hydroxysteroid dehydrogenase (HSD) were observed in embryos recovered at different times of in vitro culture. After culture of OECs with or without CRH/Cort, levels of redox potential and apoptosis, mRNA and protein expression of growth factors, and protein expression of CRHR1, GR and Fas were examined in OECs and the level of FasL was measured in CM. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. MAIN RESULTS AND THE ROLE OF CHANCE: This study showed that blastocyst development was unaffected when mouse zygotes were cultured in CZB medium containing various concentrations of CRH/Cort but was impaired when embryos were cultured with CRH/Cort plus OECs or in CM conditioned with OECs pretreated with CRH/Cort (treatment CM). Culture in treatment-CM induced oxidative stress and apoptosis in embryos. Preimplantation embryos expressed GR and Fas at all stages and CRHR1 at the blastocyst stage only. Mouse 4-cell embryos and blastocysts expressed HSD2 but not HSD1. Culture of OECs with CRH/Cort increased their oxidative stress, apoptosis, CRHR1, Fas and FasL while decreasing their GR and growth factors. Blastocyst development in treatment-CM conditioned with OECs from gld mice harboring FasL mutations was superior to treatment-CM conditioned with wild-type mouse OECs. The results suggest that CRH/Cort impairs embryo development indirectly by inducing oviductal apoptosis via activating the Fas system. The insensitivity of preimplantation embryos to CRH and corticosterone is due to, respectively, a lack of CRHR and the exclusive expression of HSD2 that inactivate corticosterone. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: Although significant, the conclusions were drawn from limited results obtained using mice and thus they need further verification in other species. For example, bovine embryos express both HSD1 and HSD2 at all the preimplantation stages whereas mouse preimplantation embryos express HSD2 exclusively without HSD1. WIDER IMPLICATIONS OF THE FINDINGS: The data are important for our understanding of the mechanisms by which stress affects female reproduction in both human and animals, as early stages of pregnancy are considered more vulnerable to stress than the late stages. STUDY FUNDING AND COMPETING INTEREST(S): This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests.


Subject(s)
Apoptosis/drug effects , Blastocyst/drug effects , Corticosterone/pharmacology , Corticotropin-Releasing Hormone/pharmacology , Embryonic Development/drug effects , Fas Ligand Protein/metabolism , Animals , Chorionic Gonadotropin/pharmacology , Fas Ligand Protein/genetics , Female , Mice , Mice, Inbred C57BL , Mutation , Oviducts/drug effects , Oviducts/metabolism
4.
Mol Hum Reprod ; 22(11): 778-790, 2016 11.
Article in English | MEDLINE | ID: mdl-27475493

ABSTRACT

STUDY QUESTION: What are the mechanisms by which the preimplantation restraint stress (PIRS) impairs embryo development and pregnancy outcome? SUMMARY ANSWER: PIRS impairs embryo development by triggering apoptosis in mouse oviducts and embryos,and this involves activation of the Fas system. WHAT IS KNOWN ALREADY: Although it is known that the early stages of pregnancy are more vulnerable than later stages to prenatalstress, studies on the effect of preimplantation stress on embryo developmentare limited. Furthermore, the mechanisms by which psychological stress impairs embryo development are largely unknown. These issues are worth exploring using the mouse PIRS models because restraint of mice is an efficient experimental procedure developed for studies of psychogenic stress. STUDY DESIGN, SIZE AND DURATION: Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in FasL in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female and male mice were used 8-10 weeks and 10-12 weeks after birth, respectively. Female mice showing vaginal plugs were paired by weight and randomly assigned to restraint treatments or as controls. For restraint treatment, an individual mouse was put in a micro-cage with food and water available. Control mice remained in their cages with food and water during the time treated females were stressed. PARTICIPANTS/MATERIALS, SETTING, METHODS: Female mice were exposed to PIRS for 48 h starting from 16:00 on the day of vaginal plug detection. At the end of PIRS, levels of glucorticoids (GC), corticotropin-releasing hormone (CRH)and redox potential were measured in serum, while levels of GC, GC receptor (GR), CRH, CRH receptor (CRHR), Fas and Fas ligand (FasL) protein, mRNAs for brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), oxidative stress (OS) and apoptosis were examined in oviducts. Preimplantation development and levels of GR, Fas, redox potential and apoptosis were observed in embryos recovered at different times after the initiation of PIRS. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to those in control mice, while the number of blastocysts/mouse (5.0 ± 0.7 versus 11.1 ± 0.5), cell number/blastocyst (49.1 ± 1.3 versus 61.5 ± 0.9), percentages of term pregnancy (37.5% versus 90.9%) and litter size (3.7 ± 0.1versus 9.6 ± 0.6) decreased, blood CRH (560 ± 23 versus 455 ± 37 pg/ml), cortisol (27.3 ± 3.4 versus 5 ± 0.5 ng/ml) and OS index (OSI: 2.8 versus 1.7) increased significantly (all P < 0.05) following PIRS. In the oviduct, while levels of CRH (1175 ± 85 versus 881 ± 33 pg/100 mg), cortisol (28.9 ± 1.7 versus14 ± 4 ng/g), CRHR (2.3 ± 0.3 versus 1.0 ± 0.0), FasL (1.31 ± 0.06 versus 1.08 ± 0.05 ng/g), Fas (1.42 ± 0.13 versus 1.0 ± 0.0) and apoptotic cells (19.1 ± 0.5% versus 8.4 ± 0.4%) increased, levels of GR proteins (0.67 ± 0.14 versus 1.0 ± 0.0) and Igf-1 (0.6 ± 0.09 versus 1.0 ± 0.0) and Bdnf (0.73 ± 0.03 versus 1.0 ± 0.0) mRNAs decreased significantly (all P < 0.05 versus control) after PIRS. Mouse embryos expressed GR and Fas at all stages of preimplantation development and embryo OS (GSH/GSSG ratio: 0.88 ± 0.03 versus 1.19 ± 0.13) and annexin-positive cells (blastocysts: 31.4 ± 3.8% versus 10.96 ± 3.4%) increased significantly (P < 0.05) following PIRS. Furthermore, the detrimental effects of PIRS on embryo development and oviductal apoptosis were much reduced in gld mice. Thus, PIRS triggered apoptosis in oviductal cells with activation of the Fas/FasL system. The apoptotic oviductal cells promoted embryo apoptosis with reduced production of IGF-1 and BDNF and increased production of FasL. LIMITATIONS, REASONS FOR CAUTION: Although important, the conclusions were drawn from limited results obtained using a single model in one species and thus they need further verification using other models and/or in other species. Furthermore, as differences in stressed samples were modest and sometimes not significant between gld and wild-type mice whereas differences between control and stressed samples were always present within gld mice, it is deduced that signaling pathways other than the Fas/FasL system might be involved as well in the PIRS-triggered apoptosis of oviducts and embryos. WIDER IMPLICATIONS OF THE FINDINGS: The data are important for studies on the mechanisms by which psychological stress affects female reproduction, as FasL expression has been observed in human oviduct epithelium. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests.


Subject(s)
Blastocyst/metabolism , Embryonic Development/physiology , Oviducts/cytology , Oviducts/metabolism , Restraint, Physical/adverse effects , Animals , Apoptosis/genetics , Apoptosis/physiology , Blastocyst/physiology , Brain-Derived Neurotrophic Factor/metabolism , Corticotropin-Releasing Hormone/metabolism , Embryonic Development/genetics , Fas Ligand Protein/metabolism , Female , Glucocorticoids/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation , Oxidative Stress/physiology , Pregnancy , Pregnancy, Animal , Receptors, Corticotropin-Releasing Hormone/metabolism , Stress, Psychological/physiopathology , fas Receptor/metabolism
5.
Aging (Albany NY) ; 8(2): 291-303, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26869336

ABSTRACT

In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.


Subject(s)
Aging/physiology , Fas Ligand Protein/metabolism , Oocytes/physiology , Signal Transduction/physiology , fas Receptor/physiology , Animals , Female , Fluorescent Antibody Technique , Mesothelin , Mice , Oxidative Stress/physiology
6.
Biol Reprod ; 91(3): 56, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25061094

ABSTRACT

Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²âº-free CZB medium containing 10 mM SrCl2) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF.


Subject(s)
Cell Nucleolus/metabolism , Cytoskeleton/metabolism , Maturation-Promoting Factor/metabolism , Oocytes/cytology , Oogenesis , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Cell Nucleolus/drug effects , Cytoskeleton/drug effects , Ectogenesis/drug effects , Embryo Culture Techniques , Female , Gene Expression Regulation, Developmental/drug effects , In Vitro Oocyte Maturation Techniques , Intermediate Filaments/drug effects , Intermediate Filaments/metabolism , Male , Maturation-Promoting Factor/antagonists & inhibitors , Membrane Fusion/drug effects , Mesothelin , Mice, Inbred Strains , Microtubules/drug effects , Microtubules/metabolism , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Strontium/pharmacology , Tubulin Modulators/pharmacology
7.
Cell Tissue Res ; 327(1): 55-66, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16951941

ABSTRACT

An efficient co-culture system, especially with oviductal or uterine epithelial cells, is important not only for the production of high quality embryos, but also for the study of the molecular dialogue between embryos and their maternal environment. Although mouse embryos have been co-cultured successfully with oviductal epithelial cells (OECs) from several species, studies on the effects of species and functionality of OECs are few. Reports concerning the necessity of direct contact between the embryo and OECs and about the culture of mouse embryos in medium conditioned with heterologous OECs have been controversial. In this study, pronuclear embryos from Kunming mice, characterized by an obvious two-cell block in vitro, were co-cultured with mouse, goat, and chick OECs. The functionality of OECs was determined by analyzing the cell cycle, apoptosis, the numbers of mitochondria and cilia, and the ability both to support embryonic development and to remove hypoxanthine from the culture medium. The necessity of direct contact between OECs and embryos was studied by repeated renewal of culture medium with fresh conditioned medium, the culture of embryos in plastic wells connected by tunnels to wells with OEC monolayers, and the co-culture of embryos separated from OECs by a filter. Both goat and chick OECs supported mouse embryonic development, but their embryotrophic lifespan was shorter than that of the mouse OECs. Whereas media conditioned with mouse OECs supported mouse embryonic development satisfactorily, medium conditioned with goat OECs supported little development. Immediate dialogue between heterologous OECs and embryos was essential for efficient co-culture, whereas direct contact between the two cell types was not; neither dialogue nor contact was needed between isologous OECs and embryos. Embryotrophic activity and the ability to remove hypoxanthine from conditioned medium declined with time after confluence and number of passages of OECs, mainly because of apoptosis and dedifferentiation. Thus, the species and functionality of OECs have profound effects on their molecular dialogue with co-cultured embryos, and efficient co-culture depends upon both positive and negative conditioning.


Subject(s)
Embryo, Mammalian/cytology , Embryonic Development/physiology , Epithelial Cells/cytology , Oviducts/cytology , Animals , Apoptosis/drug effects , Cell Communication/drug effects , Cell Count , Coculture Techniques , Culture Media, Conditioned/pharmacology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryonic Development/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Goats , Mice , Microscopy, Confocal , Mitochondria/ultrastructure , Oviducts/drug effects , Oviducts/metabolism , Species Specificity
8.
J Reprod Dev ; 52(3): 373-82, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16518081

ABSTRACT

Methods for cell cycle synchronization of mouse fetal fibroblast cells (MFFCs) were first selected and optimized. When MFFCs were cooled at 5 C for different periods of time, the highest percentage of cells at the G0/G1 phase (75.4+/-2.9%), with 3.5+/-0.3% of apoptotic cells, was achieved after 5 h of treatment. Extended cooling increased the number of apoptotic cells significantly. When MFFCs were treated with different concentrations of roscovitine (ROS) for different periods of time, the highest percentage of G0/G1 cells (83.5+/-1.8%), with 9.2+/-0.6% apoptotic cells, was obtained after exposure to 10 microM ROS for 24 h. When the cells were cooled at 5 C for 5 h followed by incubation in 10 microM ROS for 12 h, 83.6+/-1.9% were synchronized at the G0/G1 stage, with 3.6% undergoing apoptosis. Cell cycle progression was then observed after release of the MFFCs from different synchronization blocks. The highest percentages of S and G2/M cells (81% and 75%) were achieved at 12 and 20 h, respectively, after release of the MFFCs from the cooling plus ROS treatment, and these percentages were significantly higher than those obtained after release from the cooling or ROS alone blocks. Finally, MFFCs were transfected with pEGFP-N1 plasmid at the peak of the G0/G1, S, and G2/M phases, respectively, after release from the different blocks and both the transient and stable transfection efficiencies were determined. The GFP gene expression was greatly enhanced when transfection was performed at the time when most cells were at the G2/M stage after release from cooling, ROS alone, and cooling plus ROS treatments. Statistical analysis revealed a close correlation between the rate of G2/M cells and the transient and stable GFP gene expression efficiencies. Together, the results indicated that (a) the best protocol for cell cycle synchronization of MFFCs was a 5-h cooling at 5 C followed by incubation in 10 microM ROS for 12 h which produced both a high rate of synchronization in the G0/G1 phase with acceptable apoptosis and a high rate of G2/M cells after release; and (b) that the cell cycle status had marked effects on the efficiency of liposome-mediated transfection in MFFCs, with the highest transfection efficiency obtained in cells at the G2/M stage.


Subject(s)
Cell Cycle , Fibroblasts/cytology , Fibroblasts/metabolism , Transfection/methods , Animals , Apoptosis , Cells, Cultured , Fetus/cytology , Green Fluorescent Proteins/genetics , Interphase , Liposomes , Mice , Purines/pharmacology , Roscovitine , Temperature , Transfection/standards
9.
Shi Yan Sheng Wu Xue Bao ; 38(5): 404-10, 2005 Oct.
Article in Chinese | MEDLINE | ID: mdl-16363120

ABSTRACT

We studied the effects of the amount of liposome and plasmid, exposure time of cells to the liposome-plasmid complexes, number of cell passages and cell types on GFP gene transfection of mouse somatic cells. The maximal GFP transgene expression (30.7%) was achieved when mouse fetal fibroblast cells (MFFC) at 70%-90% confluence of passage 3 were exposed for 6 h to the complexes of 4 microg liposome (LipofectAMINE) and 0.3 microg plasmid (pEGFP-N1). Under these conditions, we compared the effect of the number (from primary to 15) of passages on the transfection efficiency of MFFC. The transfection efficiency of MFFC was 10.0%, 28.9% and 7.2% at the primary, 3rd and 15th passage, respectively, which indicated that the transfection efficiency decreased with passaging. When MFFC, mouse oviductal epithelial cells (MOEC) and mouse granulosa cells (MGC) were transfected at passage 3, the transfection efficiency was 27.8%, 13.7% and 14.2%, respectively, under the described transfection conditions. When the cell cycle stages of different cell types at transfection were examined, it was found that 17.2% of MFFC, 8.7% of MOEC and 9.9% of MGC were at M phases of the cell cycle. Examination of the cell cycle stages of MFFC at different passages showed that MFFC at the third passage had the highest percentage of M cells and the percentage decreased afterwards. This suggested that the transfection efficiency was correlated with the percentages of cells at M phase, and provided essential data for improvement of the transfection efficiency.


Subject(s)
Liposomes , Transfection , Animals , Cell Cycle , Cells, Cultured , Female , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Microscopy, Phase-Contrast , Pregnancy
10.
Sheng Wu Gong Cheng Xue Bao ; 20(2): 252-6, 2004 Mar.
Article in Chinese | MEDLINE | ID: mdl-15969117

ABSTRACT

Systematical studies are lacking on the influencing factors and mechanisms of the heparin enhanced sperm capacitation, although many studies have shown that heparin enhanced sperm capacitation. The effect of heparin concentration and exposure time, incubation temperature and co-culture with oviductal epithelial cells or cumulus cells on goat sperm capacitation were investigated in this study. The motility, membrane and acrosome integrity and capacitated percentage of goat spermatozoa were assessed after different heparin treatments, and rates of fertilization and embryo cleavage were compared after in vitro insemination of oocytes with spermatozoa capacitated by different heparin treatments. The major results are summarized as follows: 1) When spermatozoa were capacitated with heparin at 5, 10, 25, 50 and 100 microg/mL for 45 min, 50 and 100 microg/mL heparin treatments produced the highest capacitated percentages of 55% and 56%, respectively, but the percentage of spermatozoa with intact acrosomes in the 100 microg/mL heparin treatment decreased significantly (P < 0.05) in comparison with that in the control group, indicating that the optimal heparin concentration for goat sperm capacitation would be 50 microg/mL. 2) Capacitated percentage of spermatozoa increased with extension of treatment time when goat sperm were treated with 50 microg/mL heparin for 0, 10, 20, 30, 45, 60 or 120 min. Although heparin treatments for 45 to 120 min did not differ significantly (P > 0.05) in capacitated sperm percentages, sperm motility and membrane integrity decreased significantly when treated with heparin for 120 min. This suggested that the optimal exposure time of heparin at 50 microg/mL for goat sperm capacitation would be 45 to 60 min. 3) Significantly higher capacitated percentages of spermatozoa were obtained when goat sperm were treated at 42 and 38.5 degrees C than at 15 and 37 degrees C, but sperm motility and acrosome integrity were significantly lower when spermatozoa were treated at 42 degrees C than they were treated at other temperatures. Temperature of 38.5 degrees C would, therefore, be the optimal temperature for goat sperm capacitation. 4) The capacitated percentage of spermatozoa was significantly higher when goat sperm were co-cultured with oviductal epithelial cells than when treated with heparin alone or co-cultured with cumulus cells, but sperm motility and membrane and acrosome integrity did not differ significantly among the three treatments. Rates of fertilization (91.3%) and cleavage (72.2%) were significantly higher in the oviductal epithelial cell co-culture group than those in the heparin alone group. This indicated that co-culture with oviductal epithelial cells significantly enhanced goat sperm capacitation by heparin treatment.


Subject(s)
Fallopian Tubes/cytology , Heparin/pharmacology , Sperm Capacitation/drug effects , Spermatozoa/physiology , Acrosome Reaction/drug effects , Acrosome Reaction/physiology , Animals , Coculture Techniques , Epithelial Cells/cytology , Female , Fertilization in Vitro , Goats , Male , Sperm Capacitation/physiology , Sperm Motility , Spermatozoa/cytology
11.
Shi Yan Sheng Wu Xue Bao ; 37(5): 367-74, 2004 Oct.
Article in Chinese | MEDLINE | ID: mdl-15636364

ABSTRACT

ABSTRACT Effects of sperm and oocyte quality control on the efficiency of ICSI of in vitro matured goat oocytes were studied in this paper. The results showed that when injected intracytoplasmically, spermatozoa from caput, corpus and cauda epididymidis resulted in similar rates of fertilization, cleavage and morulae/blastocysts, but when injected subzonally, spermatozoa from caput and corpus gave rise to significantly lower rates of fertilization and embryo development than spermatozoa from the cauda epididymidis and ejaculates. When dead spermatozoa collected from semen that had been preserved in different ways were used for ICSI, those dead from liquid storage at 20 degrees C for 24 h gave rise to the best, but those dead from liquid storage at 5 degrees C for 15 days produced the poorest fertilization and embryo development. When spermatozoa were treated with different concentrations of Triton X-100 before ICSI, significantly higher rates of fertilization, cleavage and morulae/blastocysts were obtained with 0.0005% Triton X-100 than with other concentrations and manual immobilization. Oocytes were classified as of good and poor qualities by treatment in hypertonic sucrose solution, and rates of fertilization and embryo development were significantly higher in the good than in the poor oocytes after ICSI. Post-injection activation of oocytes with either A23187 or ionomycin/6-DMAP significantly increased the rates of fertilization, cleavage and morulae/blastocysts after ICSI. It is therefore concluded that (i) epididymal maturation mainly endowed spermatozoa with the capacity to fuse with the egg plasma membrane; (ii) different methods of semen storage caused different impairment of sperm fertilizing capacity; (iii) pre-injection treatment of spermatozoa with proper concentrations of Triton X-100 might be used to replace manual immobilization for ICSI; (iv) oocyte quality was a major factor influencing the efficiency of ICSI; (v) post-injection activation treatment of oocytes improved fertilization and embryo development after ICSI.


Subject(s)
Oocytes/physiology , Sperm Injections, Intracytoplasmic/methods , Spermatozoa/physiology , Animals , Female , Goats , Hypertonic Solutions/pharmacology , Male , Octoxynol/pharmacology , Oocytes/drug effects , Spermatozoa/drug effects
12.
Sheng Wu Gong Cheng Xue Bao ; 19(4): 502-5, 2003 Jul.
Article in Chinese | MEDLINE | ID: mdl-15969074

ABSTRACT

In comparison with their in vivo counterparts, the in vitro produced mammalian embryos had markedly lower rates of morula/blastocyst development and pregnancy after transfer to the recipients. Things became even worse in the cloned embryos. This necessitates improvement of the embryo culture system. Co-culture of embryos with different types of somatic cells was found beneficial for embryo development in vitro and many studies have been conducted in this area in recent years. In this paper, recent developments and the authors' own work in studies of co-culture of early mammalian embryos with somatic cells were reviewed, with emphasis on the effects of cell type, stage of estrous cycle and number of passages of somatic cells and supplement of serum on embryo development, and the mechanisms by which co-culture promote embryo development. The recent developments are summarized as follows: 1. Somatic cells of both homogeneous and heterogeneous origins can be used for co-culture of mammalian embryos, with similar developmental rates. 2. Supplementation of animal serum at appropriate concentrations improved the somatic cell growth and consequently the development of embryos in co-culture. 3. The estrous cycle stages of oviduct epithelial cells used for co-culture had no effect on the development of embryos. 4. Over-passaging of somatic cells reduced their efficiency in promoting development of the co-cultured embryos. In conclusion, studies have shown that co-culture overcame the block of embryo development in vitro and improved embryo quality with increased rates of implantation and pregnancy, but many problems remain to be solved on its influencing factors and mechanisms of action.


Subject(s)
Coculture Techniques/methods , Embryo Culture Techniques/methods , Embryo, Mammalian/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...