Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Lett ; : 217254, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270768

ABSTRACT

As the most abundant post-transcriptional modification in eukaryotes, N6-methyladenosine (m6A) plays a crucial role in cancer cell proliferation, invasion and chemoresistance. However, its specific effects on chemosensitivity to oxaliplatin-based regimens and the impact of these drugs on m6A methylation levels in colorectal cancer (CRC) remain largely unexplored. In this study, we demonstrated that the m6A methyltransferase Wilms tumor 1-associating protein (WTAP) weakens oxaliplatin chemosensitivity in HCT116 and DLD1 cells. Mechanistically, oxaliplatin treatment upregulated WTAP expression, preventing multiple forms of cell death simultaneously, a process known as PANoptosis, by decreasing intracellular oxidative stress through maintaining the expression of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element, in an m6A-dependent manner. In addition, high WTAP expression in CRC patients is associated with a poor prognosis and reduced benefit from standard chemotherapy by clinical data analysis of the TCGA database and patient cohort study. These findings suggest that targeting WTAP-NRF2-PANoptosis axis could enhance the antitumor efficacy of oxaliplatin-based chemotherapy in CRC treatment.

2.
Gut ; 72(3): 501-511, 2023 03.
Article in English | MEDLINE | ID: mdl-35803704

ABSTRACT

OBJECTIVE: Methionine metabolism is involved in a myriad of cellular functions, including methylation reactions and redox maintenance. Nevertheless, it remains unclear whether methionine metabolism, RNA methylation and antitumour immunity are molecularly intertwined. DESIGN: The antitumour immunity effect of methionine-restricted diet (MRD) feeding was assessed in murine models. The mechanisms of methionine and YTH domain-containing family protein 1 (YTHDF1) in tumour immune escape were determined in vitro and in vivo. The synergistic effects of MRD or YTHDF1 depletion with PD-1 blockade were also investigated. RESULTS: We found that dietary methionine restriction reduced tumour growth and enhanced antitumour immunity by increasing the number and cytotoxicity of tumour-infiltrating CD8+ T cells in different mouse models. Mechanistically, the S-adenosylmethionine derived from methionine metabolism promoted the N6-methyladenosine (m6A) methylation and translation of immune checkpoints, including PD-L1 and V-domain Ig suppressor of T cell activation (VISTA), in tumour cells. Furthermore, MRD or m6A-specific binding protein YTHDF1 depletion inhibited tumour growth by restoring the infiltration of CD8+ T cells, and synergised with PD-1 blockade for better tumour control. Clinically, YTHDF1 expression correlated with poor prognosis and immunotherapy outcomes for cancer patients. CONCLUSIONS: Methionine and YTHDF1 play a critical role in anticancer immunity through regulating the functions of T cells. Targeting methionine metabolism or YTHDF1 could be a potential new strategy for cancer immunotherapy.


Subject(s)
Methionine , Neoplasms , Mice , Animals , Methionine/metabolism , CD8-Positive T-Lymphocytes , Methylation , Programmed Cell Death 1 Receptor , Racemethionine/metabolism
3.
Oncogene ; 41(32): 3912-3924, 2022 08.
Article in English | MEDLINE | ID: mdl-35798877

ABSTRACT

Metastasis accounts for the major cause of cancer-related mortality. How disseminated tumor cells survive under suspension conditions and avoid anoikis is largely unknown. Here, using a metabolic enzyme-centered CRISPR-Cas9 genetic screen, we identified methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1) as a novel suppressor of anoikis. MTHFD1 depletion obviously restrained the capacity of cellular antioxidant defense and inhibited tumor distant metastasis. Mechanistically, MTHFD1 was found to bind the protein arginine methyltransferase 5 (PRMT5) and then undergo symmetric dimethylation on R173 by PRMT5. Under suspension conditions, the interaction between MTHFD1 and PRMT5 was strengthened, which increased the symmetric dimethylation of MTHFD1. The elevated methylation of MTHFD1 largely augmented its metabolic activity to generate NADPH, therefore leading to anoikis resistance and distant organ metastasis. Therapeutically, genetic depletion or pharmacological inhibition of PRMT5 declined tumor distant metastasis. And R173 symmetric dimethylation status was associated with metastasis and prognosis of ESCC patients. In conclusion, our study uncovered a novel regulatory role and therapeutic implications of PRMT5/MTHFD1 axis in facilitating anoikis resistance and cancer metastasis.


Subject(s)
Formate-Tetrahydrofolate Ligase , Neoplasms , Anoikis/genetics , Arginine/genetics , Arginine/metabolism , Formate-Tetrahydrofolate Ligase/metabolism , Humans , Methylation , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/metabolism , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/metabolism
4.
Signal Transduct Target Ther ; 7(1): 54, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35221331

ABSTRACT

Metabolic enzymes have an indispensable role in metabolic reprogramming, and their aberrant expression or activity has been associated with chemosensitivity. Hence, targeting metabolic enzymes remains an attractive approach for treating tumors. However, the influence and regulation of cysteine desulfurase (NFS1), a rate-limiting enzyme in iron-sulfur (Fe-S) cluster biogenesis, in colorectal cancer (CRC) remain elusive. Here, using an in vivo metabolic enzyme gene-based clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library screen, we revealed that loss of NFS1 significantly enhanced the sensitivity of CRC cells to oxaliplatin. In vitro and in vivo results showed that NFS1 deficiency synergizing with oxaliplatin triggered PANoptosis (apoptosis, necroptosis, pyroptosis, and ferroptosis) by increasing the intracellular levels of reactive oxygen species (ROS). Furthermore, oxaliplatin-based oxidative stress enhanced the phosphorylation level of serine residues of NFS1, which prevented PANoptosis in an S293 phosphorylation-dependent manner during oxaliplatin treatment. In addition, high expression of NFS1, transcriptionally regulated by MYC, was found in tumor tissues and was associated with poor survival and hyposensitivity to chemotherapy in patients with CRC. Overall, the findings of this study provided insights into the underlying mechanisms of NFS1 in oxaliplatin sensitivity and identified NFS1 inhibition as a promising strategy for improving the outcome of platinum-based chemotherapy in the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Iron-Sulfur Proteins , Apoptosis/genetics , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/therapeutic use , Oxaliplatin/pharmacology , Phosphorylation
5.
Cancer Commun (Lond) ; 41(2): 109-120, 2021 02.
Article in English | MEDLINE | ID: mdl-33119215

ABSTRACT

Altered metabolism is a hallmark of cancer, and the reprogramming of energy metabolism has historically been considered a general phenomenon of tumors. It is well recognized that long noncoding RNAs (lncRNAs) regulate energy metabolism in cancer. However, lncRNA-mediated posttranslational modifications and metabolic reprogramming are unclear at present. In this review, we summarized the current understanding of the interactions between the alterations in cancer-associated energy metabolism and the lncRNA-mediated posttranslational modifications of metabolic enzymes, transcription factors, and other proteins involved in metabolic pathways. In addition, we discuss the mechanisms through which these interactions contribute to tumor initiation and progression, and the key roles and clinical significance of functional lncRNAs. We believe that an in-depth understanding of lncRNA-mediated cancer metabolic reprogramming can help to identify cellular vulnerabilities that can be exploited for cancer diagnosis and therapy.


Subject(s)
Energy Metabolism , Neoplasms , RNA, Long Noncoding , Humans , Neoplasms/metabolism , Protein Processing, Post-Translational , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL