Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Small ; 20(4): e2307029, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712137

ABSTRACT

Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH·) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12 H12 ]2- (TPT@ B12 H12 ) is reported. Compared to the traditional metal-based CDT agents, TPT@B12 H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12 H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12 H12 ]-· and [TPT-H]2+ have the capacity to decompose hydrogen into 1 O2 , OH·, and O2 -· . With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12 H12 increases the levels of 1 O2 , OH·, and O2 -· . More importantly, TPT@B12 H12 effectively suppress the melanoma growth both in vitro and in vivo through 1 O2 , OH·, and O2 -· generation. This study specifically highlights the great clinical translational potential of TPT@B12 H12 as a CDT reagent.


Subject(s)
Melanoma , Neoplasms , Humans , Melanoma/drug therapy , Boron , Fluorescent Dyes , Hydrogen , Hydrogen Peroxide , Metals , Cell Line, Tumor
2.
Anal Chim Acta ; 1279: 341785, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827681

ABSTRACT

Extracellular vesicles (EVs) are important participants in numerous pathophysiological processes, and could be used as valuable biomarkers to detect and monitor various diseases. However, facile EV isolation methods are the essential and preliminary issue for their downstream analysis and function investigation. In this work, a polyhedral oligomeric silsesquioxanes (POSS) based hybrid monolith combined metal affinity chromatography (MAC) and distearoyl phospholipid ethanolamine (DSPE) function was developed via photo-initiated thiol-ene polymerization. This synthesis process was facile, simple and convenient, and the obtained hybrid monolith could be applied to efficiently isolate EVs from bio-samples by taking advantages of the specific bond of Ti4+ and phosphate groups on the phospholipid membrane of EVs and the synergistic effect of DSPE insertion. Meanwhile, the eluted EVs could maintain their structural integrity and biological activity, suggesting they could be used for downstream application. Furthermore, 75 up-regulated proteins and 56 down-regulated proteins were identified by comparing the urinary EVs of colorectal cancer (CRC) patients and healthy donors, and these proteins might be used as potential biomarkers for early screening of CRC. These results demonstrated that this hybrid monolith could be used as a simple and convenient tool for isolating EVs from bio-samples and for wider applications in biomarker discovery.


Subject(s)
Extracellular Vesicles , Organosilicon Compounds , Humans , Organosilicon Compounds/chemistry , Polymerization , Hydrophobic and Hydrophilic Interactions , Biomarkers , Phospholipids
3.
Environ Res ; 224: 115463, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36791841

ABSTRACT

Halogenated methanesulfonic acids (HMSAs) are an important new class of organic compounds as they were universal in the water cycle and drinking water sources. However, no study has investigated the presence of HMSAs in surface water and sediment from China. The present study reports the occurrence and spatiotemporal distribution of seven HMSAs in water and sediment samples from Hangzhou Bay, China. Trifluoromethanesulfonic acid (TFMSA) was the main contributor to the concentrations of HMSAs in water and sediment samples from spring, summer, autumn and winter which were 30.8-541 ng/L, n. d.-86.6 ng/L, 4.22-70.9 ng/L and 8.86-192 ng/L, separately, while in sediment samples were n. d.-11.1 ng/g, n. d.-12.9 ng/g, n. d.-22.5 ng/g, n. d.-4.60 ng/g, respectively. The levels of HMSAs in water from winter and spring were higher than those in summer and autumn, and the concentrations of the target HMSAs in water presents a seasonal pattern affected by the temperature, the precipitation and river flow variations. Nevertheless, the levels of HMSAs in sediment were highest in the area near the industrial area and the confluences of rivers. Correlation analysis revealed that the concentrations of TFMSA were significantly positively correlated with total organic carbon (TOC) in water samples. Although TFMSA is regarded as low toxic based on the EC50 value of acute toxicity, the potential risks to aquatic ecology should be paid more attention due to its high concentrations in the aquatic system and the environmental persistency.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Bays , Environmental Monitoring , Drinking Water/analysis , China , Rivers , Geologic Sediments/analysis
4.
Ecotoxicol Environ Saf ; 244: 114035, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36058162

ABSTRACT

Coagulation is an effective preliminary treatment process for textile wastewater. In order to evaluate the effectiveness of the coagulation process, we performed quantitative structure activity relationship (QSAR) analyses with total organic carbon (TOC) removal rates (Rexp) as an index by three different coagulants (AlCl3, FeCl3, and MgCl2). The experimental results showed that the average Rexp of the three coagulants was 39.12% ± 2.60%, 51.60% ± 2.88%, and 49.95% ± 3.17%. Subsequently, 42 molecular descriptors of dye molecules were calculated by quantitative calculation softwares Gaussian 09, Material Studio 7.0, and Multiwfn 3.7, and then QSAR models were constructed by a multiple linear regression (MLR) method for the three coagulation systems. The developed QSAR models demonstrated excellent stability, robustness, and predictability with values of R2 = 0.7677, 0.8015, and 0.7035, Q2INT = 0.6067, 0.7026, and 0.5898, Q2EXT = 0.5505, 0.5076, and 0.5697, respectively. Based on the analysis of quantum parameters, the coagulation mechanism for AlCl3, FeCl3 is primarily electrostatic adsorption as well as hydrogen bonding, while MgCl2 coagulates dyes mainly by electrostatic adsorption. This study provides an assessment of the removal rules and a feasible method for predicting dye removal rates in AlCl3, FeCl3, and MgCl2 coagulation process.


Subject(s)
Quantitative Structure-Activity Relationship , Wastewater , Carbon , Coloring Agents/chemistry , Textiles , Wastewater/chemistry
5.
J Hazard Mater ; 438: 129448, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35803185

ABSTRACT

QSAR modeling could be a promising tool for guiding the development of novel and cost-effective environmental technologies. As an example, it could be widely used to analyze the degradation rules of organic pollutants in various decomposition methods. However, a lack of systematic research on a particular removal method is significant in revealing the decomposition rule of pollutants more accurately and guiding industrial applications. In this study, six coagulation systems (MnO2/Fe(OH)3/AlCl3/FeCl3/CaCl2/MgCl2) were used as examples to remove 38 dyes under three pH conditions, and the characteristics and differences of these systems were explored by QSAR modeling. The results showed that the removal effect by MnO2 under acidic and neutral conditions and Fe(OH)3 under acidic conditions were quantitatively described mainly by bond order (BO) and Fukui index (f (+) and f (0)), which reflected that oxidative degradation dominated. In contrast, most of the critical parameters of other systems were molecular descriptors represented by ∑q(O) (the total charge of all the oxygen atoms in the molecule) and SAA (surface area of a molecule), which reflected that electrostatic adsorption and hydrogen-bond adsorption processes dominated.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Coloring Agents/chemistry , Manganese Compounds , Oxides , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/chemistry
6.
Ecotoxicol Environ Saf ; 240: 113693, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35653976

ABSTRACT

Coagulation is the most widely used method in the treatment of printing and dying wastewater. To better understand the relationship between the coagulation effect and dye molecular structures, quantitative structure activity relationship (QSAR) analyses were performed to elucidate the factors affecting the coagulation in ferric chloride (FeCl3) coagulation process. First, the coagulation experiments on 38 dye molecules were conducted to determine their color removal rates (Rexp) by FeCl3 under different pH conditions (i.e., pH = 4 and 10). The results showed that the average Rexp of dyes were 41.36% ± 2.40% at pH value of 4 and 55.70% ± 2.83% at pH value of 10. Subsequently, a multiple linear regression (MLR) method was used to construct QSAR models based on Rexp and 42 molecular parameters calculated by Gaussian 09, Materials Studio 7.0 and Multiwfn. The developed QSAR models exhibited excellent stability, reliability, and robustness with values of R2 = 0.7950, 0.8170, Q2INT = 0.6401, 0.7382, Q2EXT = 0.5168, 0.5441, at pH values of 4 and 10, respectively. Through analysis of quantum parameter values, electrostatic adsorption and hydrogen bonding adsorption were primarily responsible for the coagulation process. Therefore, this study could be useful in providing critical information for evaluating the removal efficiency and a feasible way to predict the removal rate of dyes by FeCl3 when no coagulation experiments were conducted.


Subject(s)
Quantitative Structure-Activity Relationship , Wastewater , Adsorption , Coloring Agents , Reproducibility of Results , Wastewater/chemistry
7.
Sci Total Environ ; 827: 154280, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35247402

ABSTRACT

In this study, we investigated the emission and fate of 9 organophosphate esters (OPEs) from a natural environment chamber, in which three environment matrices (i.e., air, dust, and window film samples) as well as three decoration materials (i.e., laminate flooring, latex paint, and nonwoven paper) were collected within gradient variation of room temperature and relative humidity. ΣAlkyl-OPEs and ΣCl-OPEs were the predominant classes in the three environment matrices, accounting - on average - for 98.7%, 99.8% and 99.3% of ΣOPEs in indoor dust, air and window film, respectively. TBOEP was the most abundant OPE in air, dust, and laminate flooring, respectively, while tris (2-chloro-isopropyl) phosphate (TCIPP) and tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) in nonwoven paper and latex paint, respectively. The results showed that higher room temperature expedited the emission of OPEs to indoor air. However, the room temperature and relative humidity had no effect on the levels of OPEs in dust. The OPEs equilibrium time in indoor environment may be dependent on room temperature and relative humidity. The area specific emission rates (SERs) of the three materials were calculated, and an optimal expression based on the concept of mass balance model was constructed, preliminarily revealing a general relationship between OPEs source and sink effects in indoor environment.


Subject(s)
Flame Retardants , China , Dust/analysis , Environmental Monitoring , Esters/analysis , Flame Retardants/analysis , Latex , Organophosphates/analysis , Phosphates
8.
ACS Appl Mater Interfaces ; 13(34): 40590-40601, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34415719

ABSTRACT

Two-dimensional single-atom catalysts (2D SACs) have been widely studied on the nitrogen reduction reaction (NRR). The characteristics of 2D catalysts imply that both sides of the monolayer can be catalytic sites and adsorb electrolyte ions or molecules from solutions. Overstrong adsorption of electrolyte ions or molecules on both sides of the catalyst site will poison the catalyst, while the adsorbate on one side of the catalytic site will modify the activity and selectivity of the other side for NRR. Discovering the influence of adsorption of electrolyte ions or molecules as a functional ligand on catalyst performance on the NRR is crucial to improve NRR efficiency. Here, we report this work using the density functional theory (DFT) method to investigate adsorption of electrolyte ions or molecules as a functional ligand. Among all of the studied 18 functional ligands and 3 transition metals (TMs), the results showed that Ru&F, Ru&COOH, and Mo&H2O combinations were screened as electrocatalysis systems with high activity and selectivity. Particularly, the Mo&H2O combination possesses the highest activity with a low ΔGMAX of 0.44 eV through the distal pathway. The superior catalytic performance of the Mo&H2O combination is mainly attributed to the electron donation from the metal d orbital. Furthermore, the functional ligands can occupy the active sites and block the competing vigorous hydrogen evolution reaction. Our findings offer an effective and practical strategy to design the combination of the catalyst and electrolyte to improve electrocatalytic NRR efficiency.

9.
Chemosphere ; 280: 130577, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33971408

ABSTRACT

In this study, the adsorption effect by freshly formed ferric hydroxide (FFFH) for the removal of 47 synthetic dye and antibiotic wastewaters under different pH conditions (i.e., pH = 4, 7, and 10) was investigated. The average total organic carbon (TOC) removal rates (Rexp) of pollutants under acidic, neutral, and alkaline conditions were 27.10 ± 3.21%, 15.16 ± 2.48%, and 9.72 ± 2.81%, respectively. By analyzing the characteristics of FFFH measured by SEM, XRD, FT-IR, TGA and BET, the properties of pollutants, and the values of Rexp, one can conclude that the large specific surface area and rich hydroxyl groups on the surface of FFFH were the reasons for its adsorption capacity for organic pollutants, and the electrostatic adsorption was the main reason for higher removal rate in acidic condition. Subsequently, to better elucidate the intrinsic factors influencing the removal rates at the molecular structure level, three optimal quantitative structure-activity relationship (QSAR) models were established by using multiple linear regression (MLR) analysis. Results of model validations (e.g., regression coefficient, internal and external verifications, and Y-randomization) showed that the established models exhibited excellent stability, reliability, and robustness with the values of R2 = 0.7544, 0.7764, 0.7528, Q2INT = 0.6451, 0.6836, 0.6228, and Q2EXT = 0.5890, 0.6029, 0.7298 under acidic, neutral, and alkaline conditions, respectively. The results of quantum parameter analysis revealed that the adsorption mechanism of FFFH for dyes and antibiotics mainly includes the activity of adsorption site, the behavior of electron transfer and the strength of molecular polarity.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Coloring Agents , Ferric Compounds , Hydrogen-Ion Concentration , Kinetics , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
10.
Phys Chem Chem Phys ; 23(7): 4178-4186, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33586741

ABSTRACT

Designing atomically dispersed metal catalysts for the nitrogen reduction reaction (NRR) is an effective approach to achieve better energy conversion efficiencies. In this study, we designed a series of single molybdenum (Mo) atom-anchored porous two-dimensional Mo porphyrin (2D Mo-Pp) monolayers modified by B, C, O, P and S as efficient NRR catalysts to improve the catalytic performance. We introduced two key parameters, θ (pz orbital filling of heteroatoms) and φ (Bader charge of central Mo atoms). It shows that θ and φ play important roles in nitrogen absorption by analyzing the regression models. In particular, the theoretical results suggested that the 2D Mo-Pp monolayer modified by B has an ultralow limiting potential of 0.35 V and can suppress the hydrogen evolution reaction, making the 2D Mo-Pp monolayer modified by B a promising NRR electrocatalyst with high efficiency and selectivity. This work provides insights into the rational design of the elaborate structure of single-atom catalysts with tunable electrocatalytic activities.

11.
Environ Pollut ; 273: 116502, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33486251

ABSTRACT

Based on the bond order, fukui indices and other related descriptors, as well as temperature, a new QSAR model was established to predict the rate constant (kO3) of VOCs degradation by O3. 302 logkO3 values (178-409 K) of 149 VOCs were divided into training set (242 logkO3) and test set (60 logkO3), respectively, which were used to construct and verify the QSAR model. The optimal model (R2 = 0.83, q2 = 0.82, Qext2 = 0.72) shows that EHOMO, BOx and q(C-)n have a greater influence on the value of logkO3. In addition, fukui indices and logkO3 are well correlated. The applicability domains of the current models can be used to predict kO3 of a wide range of VOCs at different temperatures.

12.
Environ Sci Pollut Res Int ; 28(6): 7191-7199, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33026623

ABSTRACT

Electrochemical reduction is a promising technology to treat polluted water contaminated by nitrate and nitrite ions under mild conditions. NO is an important intermediate species and determines selectivity toward different product and rate of whole reaction. However, the most studied NOER electrocatalysts are noble pure metal, which face problems of low utilization and high cost. Herein, by means of density functional theory computations, catalytic performance of 2D TM-Pc sheets (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru) as NOER catalysts were systematically evaluated. Among all the studied 2D TM-Pc sheets, our results revealed 2D Co-Pc sheet was identified as the best NOER catalyst, for a proper NO absorption energy and its relatively low limiting potential. The final reduction product of NOER is either NH3 at low coverages with energy input of 0.58 eV or N2O at high coverages with no energy barrier. Moreover, 2D Co-Pc sheet can efficiently suppress the competing HER. This study could not only provide a new approach for electrochemical denitrification to resolve environmental pollution but also be useful for valuable ammonia production.


Subject(s)
Indoles , Nitric Oxide , Catalysis , Isoindoles , Oxidation-Reduction
13.
Sci Total Environ ; 729: 138871, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32361444

ABSTRACT

The reaction with hydroxyl radicals (•OH) is an important way to remove the most volatile organic compounds (VOCs) in atmospheric environment. Thus, the reaction rate constant (kOH) is important for assessing the persistence and exposure risk of VOCs, and is of great significance in evaluating the ecological risk of volatile organic chemicals. Fukui indices and bond order have a large effect on the degradation of VOCs, but so far, quantitative structure activity relationship (QSAR) models for VOCs degradation have rarely been considered these two factors. In this study, these two momentous factors will be considered along with other relevant quantitative parameters. A total of 180 substances are divided into training set (144 substances) and test set (36 substances), which are used to build and validate quantitative structure activity relationship (QSAR) models, respectively. Internal, external verification and y-randomization tests showed that the established model had excellent stability and reliability. The energy of the highest occupied molecular orbital (EHOMO), the possibility of being attacked by radicals (f (0)n) and the breaking of chemical bonds (BOx) are the main factors affecting VOCs removal. Finally, the scope of the application domain was determined and the robustness of the model was further verified.

14.
J Hazard Mater ; 394: 121811, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32200234

ABSTRACT

Organophosphate flame retardants (OPFRs) have been increasingly utilized as flame retardants in various fields due to the phasing out of polybrominated diphenyl ethers. To achieve a better understanding of the degradation of OPFRs undergoing supercritical water oxidation (SCWO) process, two-dimensional and three-dimensional quantitative structure-activity relationship (2D-QSAR and 3D-QSAR) models were established to investigate the factors influencing the total carbon degradation rates (kTOC). Results of the QSAR models demonstrated reliable results to estimate the kTOC values, but varied in the influencing factors. Two distinct degradation mechanisms were subsequently proposed based on the distribution of LUMO in molecules for the 2D-QSAR model. CoMFA and CoMSIA methods were applied to develop the 3D-QSAR models. Steric fields were observed to influence kTOC values more than electrostatic fields in the CoMFA model with the contribution rates of 87.2% and 12.8%, respectively. In the CoMSIA model, influence on kTOC values varies between different types of fields with the hydrophobic field being the most influential at 62.1%, followed by the steric field at 25.7% and then the electrostatic field at 10.8%. Results from this study generated critical knowledge of influencing factors on OPFRs degradation and yielded theoretical basis for estimating removal behaviors of OPFRs undergoing SCWO process.

15.
Phys Chem Chem Phys ; 22(4): 2457-2465, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31939963

ABSTRACT

Lattice strain, either tensile or compressive, can fine-tune the electronic structure of surfaces via altering the distances between surface atoms, thereby modifying the catalytic activity of catalysts. Numerous examples of strain engineering have been applied to various electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), but strain-optimized 2D carbon-based single-atom electrocatalysts for catalyzing the overall water splitting reaction have received little attention. Here, we applied the lattice strain of Co,N co-decorated graphyne (Co@N1-GY) to directly optimize its catalytic activity for the overall water splitting reaction based on first-principles calculations. Our calculations suggest that compressive strain and tensile strain lead to less stability of Co@N1-GY and the distances between C and Co atoms increase linearly with the strain changing from compressive to tensile, thus linearly upshifting the p-band center of C atoms and the d-band center of Co atoms. In addition, biaxial strain has more remarkable effects on these properties than uniaxial strain. From compressive to tensile strain, the chemisorption of electrochemically generated intermediates in both HER and OER becomes weaker and weaker. A tensile strain of 0.5% on Co@N1-GY gives an ideal HER performance, while the OER reaches the minimum overpotential of 0.33 V under the biaxial tensile strain of 3%.

16.
Chemosphere ; 240: 124928, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31563101

ABSTRACT

Oxidation is an attractive treatment method to effectively remove organic contaminants in water. In this study, degradation of 30 organic compounds in different oxidation systems was evaluated, including oxygen (O2), hydrogen peroxide (H2O2), ozone (O3) and hydroxyl radical (HO). First, a quantitative structure-activity relationship (QSAR) model for oxidation-reduction potentials (ORPs) of organics was developed and exhibited a good performance to predict ORP values of organics with evaluation indices of squared correlation coefficient (R2) = 0.866, internal validation (q2) = 0.811 and external validation (Qext2) = 0.669. Four quantum parameters, including f(+)n, f(-)n, EHOMO and EB3LYP dominate the ORP values. Subsequently, a relationship between reaction rates (k) and the difference of ORP for oxidants and organics (ΔEoxi-org) was established, however, which was limited (R2= 0.697). Therefore, two new predictors (slopes and intercepts) are proposed based on the linear relationships between k values and ORPs of oxidants. These new predictors can be applied to estimate the reaction rates and minimum oxidation potential for organic compounds. Afterwards, to express the two predictors, QSAR models were established. The two optimal QSAR models fitted very well with experimental values and were demonstrated to be stable and accurate based on R2 (0.982 and 0.965), q2 (0.950 and 0.950) and Qext2 (0.985 and 0.989). BOx, q(H)+ and q(C)x were main factors influencing the slopes and intercepts. This study developed methods to predict ORPs of organics and established two new predictors to estimate the reaction rates undergoing different oxidation processes, offering new insights into the oxidant selection.


Subject(s)
Models, Theoretical , Organic Chemicals/analysis , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/analysis , Water Purification/methods , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Oxidants/chemistry , Oxidation-Reduction , Oxygen/chemistry , Ozone/chemistry , Wastewater/chemistry , Water
17.
Eur J Med Chem ; 182: 111597, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31422225

ABSTRACT

Fatty acid synthase (FASN) is a lipogenic enzyme that is selectively upregulated in malignant cells. There is growing consensus on the oncogenicity of FASN-driven lipogenesis and the potential of FASN as a druggable target in cancer. Here, we report the synthesis and FASN inhibitory activities of two novel galloyl esters of trans-stilbene EC1 and EC5. Inhibition of FASN was accompanied by a loss in AKT activation and profound apoptosis in several non-small cell lung cancer (NSCLC) cells at the growth inhibitory concentrations of EC1 and EC5. Both FASN and phospho-AKT levels were concurrently downregulated. However, addition of a lipid concentrate to the treated cells reinstated cell viability and reversed the loss of FASN and AKT protein levels, thus recapitulating the causal relationship between FASN inhibition and the loss in cell viability.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Esters/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Gallic Acid/pharmacology , Lung Neoplasms/drug therapy , Stilbenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Esters/chemical synthesis , Esters/chemistry , Fatty Acid Synthase, Type I/metabolism , Gallic Acid/analogs & derivatives , Gallic Acid/chemistry , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Structure , Stilbenes/chemical synthesis , Stilbenes/chemistry , Structure-Activity Relationship
18.
Chemosphere ; 212: 828-836, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30193231

ABSTRACT

Synergistic oxidation of ozone (O3) and hydrogen peroxide (H2O2) is an effective water treatment for the elimination of organic pollutants. In this study, 23 organic compounds were conducted to study the reaction rate constants during O3-H2O2 oxidation. Then, two- and three-dimensional quantitative structure-activity relationship (QSAR) models were established to investigate the factors influencing the reaction rate constants by using multiple linear regression method and comparative molecular similarity index analysis (CoMSIA) method, respectively. Both of the two models showed good performance on predicting the reaction rate constants, the associated statistical indices of 2D-QSAR and 3D-QSAR models were R2 = 0.898 and 0.952, q2 = 0.841 and 0.951, Qext2 = 0.968 and 0.970, respectively. But varied in the influence factors, as for the 2D-QSAR model, three quantum chemical parameters, included dipole moment, the largest change of charge in each atom during the nucleophilic attack, the maximum positive partial charge on a hydrogen atom linked with a carbon atom affected the reaction rate. While in the 3D-QSAR model, the electrostatic field played the most important role in evaluating the reaction rate with the contribution of 35.8%, followed by hydrogen bond acceptor and hydrophobic fields with the contribution of 24.9% and 23.2%, respectively. These two models provided predictive tools to study the influencing factors for the degradation of organics and might potentially be applied for estimating the removal properties of unknown organics in O3-H2O2 oxidation process.


Subject(s)
Ozone/chemistry , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/chemistry , Water Purification/methods , Hydrogen Peroxide/chemistry , Models, Molecular , Organic Chemicals/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...