Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791090

ABSTRACT

AIM: C1q/TNF-related protein 6 (CTRP6) is a novel adipokine involved in insulin resistance. Thus, we aim to investigate the expression profile of CTRP6 in the plasma, adipose tissue and placenta of GDM patients and mice. METHODS: Chinese Han pregnant women (GDM n = 9, control n = 10) with a scheduled caesarean section delivery were recruited. A number of high-fat diet (HFD) induced-pregnancy C57BL/6 mice were chosen as an animal model of GDM. Circulating levels of CTRP6 and adiponectin were examined by ELISA. CTRP6 expression in adipose tissue and placenta were detected by real-time qPCR and WB. RESULT: Plasma CTRP6 levels were decreased during the first and second trimesters in mice, as well as the second and third trimesters in patients, while they were increased at delivery in GDM patients and mice. Plasma CTRP6 levels were significantly correlated with WBC, systolic pressure, diastolic pressure and fasting blood glucose. Moreover, CTRP6 mRNA expression in the subcutaneous (sWAT) and omental white adipose tissue (oWAT), as well as in the placenta, was significantly higher in GDM human patients at cesarean delivery. Furthermore, the mRNA expression of Ctrp6 was increased in the sWAT and visceral WAT (vWAT), whilst decreased in the interscapular brown adipose tissue (iBAT), of GDM mice at cesarean delivery. CONCLUSION: Dynamically expressed CTRP6 may be served as a candidate target for treatment of GDM.

2.
J Physiol Biochem ; 80(2): 407-420, 2024 May.
Article in English | MEDLINE | ID: mdl-38492180

ABSTRACT

Current study investigated the impact of maternal and postnatal overnutrition on phenotype of adipose, in relation to offspring thermogenesis and sex. Female C57BL/6 J mice were fed with CHOW or high fat diet (HFD) for 2 weeks before mating, throughout gestation and lactation. At weaning, pups were fed to 9 weeks old with CHOW or HFD, which resulted in four groups for each gender--male or female: CHOW-CHOW (CC), CHOW-HFD (CH), HFD-CHOW (HC), HFD-HFD (HH). Maternal and post-weaning HFD enhanced thermogenic factors such as Acox1, Dio2 and Cox8b in iBAT of male and female offspring, but increased SIRT1, PGC-1α and UCP1 only in female. However, Acox1, Dio2 and Cox8b mRNA expression and SIRT1, PGC-1α and UCP1 protein expression were only enhanced upon maternal and post-weaning HFD in sWAT and pWAT of female offspring. Increased metrnl expression in adipose were observed in sex- and depot-specific manner, while enhanced circulating metrnl level was only observed in male offspring undergoing maternal HFD. Palmitic acid changed metrnl expression during preadipocytes differentiation and siRNA-mediated knockdown of metrnl inhibited preadipocyte differentiation. Female offspring were more prone to resist adverse outcomes induced by maternal and post-weaning overnutrition, which probably related to metrnl expression and thermogenesis.


Subject(s)
Diet, High-Fat , Nerve Growth Factors , Overnutrition , Thermogenesis , Animals , Female , Male , Mice , Pregnancy , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Maternal Nutritional Physiological Phenomena , Mice, Inbred C57BL , Overnutrition/metabolism , Prenatal Exposure Delayed Effects/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism
3.
J Mol Endocrinol ; 72(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38029302

ABSTRACT

N1-methylnicotinamide (MNAM), a product of methylation of nicotinamide through nicotinamide N-methyltransferase, displays antidiabetic effects in male rodents. This study aimed to evaluate the ameliorative potential of MNAM on glucose metabolism in a gestational diabetes mellitus (GDM) model. C57BL/6N mice were fed with a high-fat diet (HFD) for 6 weeks before pregnancy and throughout gestation to establish the GDM model. Pregnant mice were treated with 0.3% or 1% MNAM during gestation. MNAM supplementation in CHOW diet and HFD both impaired glucose tolerance at gestational day 14.5 without changes in insulin tolerance. However, MNAM supplementation reduced hepatic lipid accumulation as well as mass and inflammation in visceral adipose tissue. MNAM treatment decreased GLUT4 mRNA and protein expression in skeletal muscle, where NAD+ salvage synthesis and antioxidant defenses were dampened. The NAD+/sirtuin system was enhanced in liver, which subsequently boosted hepatic gluconeogenesis. GLUT1 protein was diminished in placenta by MNAM. In addition, weight of placenta, fetus weight, and litter size were not affected by MNAM treatment. The decreased GLUT4 in skeletal muscle, boosted hepatic gluconeogenesis and dampened GLUT1 in placenta jointly contribute to the impairment of glucose tolerance tests by MNAM. Our data provide evidence for the careful usage of MNAM in treatment of GDM.


Subject(s)
Diabetes, Gestational , Glucose Intolerance , Insulin Resistance , Pregnancy , Humans , Female , Male , Mice , Animals , NAD , Mice, Inbred C57BL , Niacinamide/pharmacology , Glucose Intolerance/metabolism , Diabetes, Gestational/drug therapy , Diabetes, Gestational/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism
4.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38069063

ABSTRACT

There is a significant comorbidity between obesity and periodontitis, while adipokines are pivotal in the immunoinflammatory process, which may play a role in this special relationship. We aimed to assess the effect of adipokines as mediators in the progression of periodontitis in obese Sprague Dawley rats. Rats were divided into four groups: normal body weight with and without periodontitis and obesity with and without periodontitis. Experimental obesity and periodontitis were induced by a high-fat diet or ligaturing, and the effect was measured using metabolic and micro-computed tomography analysis and histological staining. Compared with the other three groups, the group of periodontitis with obesity (OP) had the heaviest alveolar bone absorption, the largest increase in osteoclasts, the utmost inflammatory cell infiltration and the highest expressions of pro-inflammatory cytokines and nuclear factor-kappa B ligand (RANKL); meanwhile, its expression of the osteogenesis-related gene was the lowest among the four groups. The expressions of leptin, visfatin, resistin, retinol-binding protein 4 (RBP4) and asprosin were upregulated, while adiponectin was decreased significantly in OP. The strong positive associations between the periodontal or circulating levels of RBP4 (or asprosin) and the degree of alveolar resorption in experimental periodontitis and obese rats were revealed. The upregulated expression of inflammation biomarkers, the corresponding degradation in connective tissue and the generation of osteoclasts in periodontitis were activated and exacerbated in obesity. The elevated level of RBP4/asprosin may contribute to a more severe periodontal inflammatory state in obese rats.


Subject(s)
Alveolar Bone Loss , Periodontitis , Animals , Rats , Adipokines/metabolism , Alveolar Bone Loss/etiology , Inflammation , Obesity/complications , Obesity/metabolism , Periodontitis/complications , Rats, Sprague-Dawley , X-Ray Microtomography
5.
J Nutr Biochem ; 115: 109296, 2023 05.
Article in English | MEDLINE | ID: mdl-36849030

ABSTRACT

Hepatic NAD+ homeostasis is essential to metabolic flexibility upon energy balance challenges. The molecular mechanism is unclear. This study aimed to determine how the enzymes involved in NAD+ salvage (Nampt, Nmnat1, Nrk1), clearance (Nnmt, Aox1, Cyp2e1), and consumption pathways (Sirt1, Sirt3, Sirt6, Parp1, Cd38) were regulated in the liver upon energy overload or shortage, as well as their relationships with glucose and lipid metabolism. Male C57BL/6N mice were fed ad libitum with the CHOW diet, high-fat diet (HFD), or subjected to 40% calorie restriction (CR) CHOW diet for 16 weeks respectively. HFD feeding increased hepatic lipids content and inflammatory markers, while lipids accumulation was not changed by CR. Both HFD feeding and CR elevated the hepatic NAD+ levels, as well as gene and protein levels of Nampt and Nmnat1. Furthermore, both HFD feeding and CR lowered acetylation of PGC-1α in parallel with the reduced hepatic lipogenesis and enhanced fatty acid oxidation, while CR enhanced hepatic AMPK activity and gluconeogenesis. Hepatic Nampt and Nnmt gene expression negatively correlated with fasting plasma glucose levels concomitant with positive correlations with Pck1 gene expression. Nrk1 and Cyp2e1 gene expression positively correlated with fat mass and plasma cholesterol levels, as well as Srebf1 gene expression. These data highlight that hepatic NAD+ metabolism will be induced for either the down-regulation of lipogenesis upon over nutrition or up-regulation of gluconeogenesis in response to CR, thus contributing to the hepatic metabolic flexibility upon energy balance challenges.


Subject(s)
Nicotinamide-Nucleotide Adenylyltransferase , Sirtuins , Mice , Male , Animals , Diet, High-Fat/adverse effects , NAD/metabolism , Caloric Restriction , Cytochrome P-450 CYP2E1/metabolism , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism , Lipids , Sirtuins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...