Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 23(1): 1204, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062421

ABSTRACT

BACKGROUND: Though our previous study has demonstrated that the single-incision plus one-port laparoscopic surgery (SILS + 1) is safe and feasible for sigmoid colon and upper rectal cancer and has better short-term outcomes compared with conventional laparoscopic surgery (CLS), the long-term outcomes of SILS + 1 remains uncertain and are needed to evaluated by an RCT. METHODS: Patients with clinical stage T1-4aN0-2M0 rectosigmoid cancer were enrolled. The participants were randomly assigned to either SILS + 1 (n = 99) or CLS (n = 99). The 3-year DFS, 5-year OS, and recurrence patterns were analyzed. RESULTS: Between April 2014 and July 2016, 198 patients were randomly assigned to either the SILS + 1 group (n = 99) or CLS group (n = 99). The median follow-up in the SILS + 1 group was 64.0 months and in CLS group was 65.0 months. The 3-year DFS was 87.8% (95% CI, 81.6-94.8%) in SILS + 1 group and 86.9% (95% CI, 81.3-94.5%) in CLS group (hazard ratio: 1.09 (95% CI, 0.48-2.47; P = 0.84)). The 5-year OS was 86.7% (95% CI,79.6-93.8%) in the SILS + 1 group and 80.5% (95% CI,72.5-88.5%) in the CLS group (hazard ratio: 1.53 (95% CI, 0.74-3.18; P = 0.25)). There were no significant differences in the recurrence patterns between the two groups. CONCLUSIONS: We found no significant difference in 3-year DFS and 5-year OS of patients with sigmoid colon and upper rectal cancer treated with SILS + 1 vs. CLS. SILS + 1 is noninferior to CLS when performed by expert surgeons. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02117557 (registered on 21/04/2014).


Subject(s)
Laparoscopy , Rectal Neoplasms , Sigmoid Neoplasms , Surgical Wound , Humans , Treatment Outcome , Length of Stay , Rectal Neoplasms/surgery , Sigmoid Neoplasms/surgery
2.
Mater Today Bio ; 21: 100712, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37448664

ABSTRACT

In recent years, electroconductive hydrogels (ECHs) have shown great potential in promoting nerve regeneration and motor function recovery following diabetic peripheral nerve injury (PNI), attributed to their similar electrical and mechanical characteristics to innate nervous tissue. It is well-established that PNI causes motor deficits and pain, especially in diabetics. Current evidence suggests that ropivacaine (ROP) encapsulated in poly lactic-co-glycolic acid (PLGA) microspheres (MSs) yield a sustained analgesic effect. In this study, an ECH electroconductive network loaded with MS/ROP (ECH-MS/ROP) was designed as a promising therapeutic approach for diabetic PNI to exert lasting analgesia and functional recovery. This dual delivery system allowed ROP's slow and sequential release, achieving sustained analgesia as demonstrated by our in vivo experiments. Meanwhile, this system was designed like a lamellar dressing, with desirable adhesive and self-curling properties, convenient for treating injured nerve tissues via automatically wrapping tube-like structures, facilitating the process of implantation. Our in vitro assays verified that ECH-MS/ROP was able to enhance the adhesion and motility of Schwann cells. Besides, both in vitro and in vivo studies substantiated that ECH-MS/ROP stimulated myelinated axon regeneration through the MEK/ERK signaling pathway, thereby improving muscular denervation atrophy and facilitating functional recovery. Therefore, this study suggests that the ECH-MS/ROP dressing provides a promising strategy for treating diabetic PNI to facilitate nerve regeneration, functional recovery and pain relief.

3.
Acta Biomater ; 169: 209-227, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37516419

ABSTRACT

At present, surgical debridement and systematic administration of antibiotics represent the mainstay of treatment for chronic osteomyelitis. However, it is now understood that Staphylococcus aureus (S. aureus) can survive within excessively polarized M2 macrophages and evade antibiotics, accounting for the high recurrence of chronic osteomyelitis. Effective treatments for intracellular infection have rarely been reported. Herein, we designed an in situ sprayed liposomes hydrogels spray with macrophage-targeted effects and the ability to reverse polarization and eradicate intracellular bacteria to reduce the recurrence of osteomyelitis. Resiquimod (R848)-loaded and phosphatidylserine (PS)-coating nanoliposomes were introduced into fibrinogen and thrombin to form the PSL-R848@Fibrin spray. Characterization and phagocytosis experiments were performed to confirm the successful preparation of the PSL-R848@Fibrin spray. Meanwhile, in vitro cell experiments validated its ability to eliminate intracellular S. aureus by reprogramming macrophages from the M2 to the M1 phenotype. Additionally, we established a chronic osteomyelitis rat model to simulate the treatment and recurrence process. Histological analysis demonstrated a significant increase in M1 macrophages and the elimination of intracellular bacteria. Imaging revealed a significant decrease in osteomyelitis recurrence. Overall, the liposome hydrogels could target macrophages to promote antibacterial properties against intracellular infection and reduce the recurrence of chronic osteomyelitis, providing the foothold for improving the outcomes of this patient population. STATEMENT OF SIGNIFICANCE: Chronic osteomyelitis remains a high recurrence although undergoing traditional treatment of debridement and antibiotics. S. aureus can survive within the excessively polarized M2 macrophages to evade the effects of antibiotics. However, few studies have sought to investigate effective intracellular bacteria eradication. Herein, we designed a macrophage-targeted R848-containing liposomes fibrin hydrogels spray (PSL-R848@Fibrin) that can reprogram polarization of macrophages and eradicate intracellular bacteria for osteomyelitis treatment. With great properties of rapid gelation, strong adhesion, high flexibility and fit-to-shape capacity, the facile-operated immunotherapeutic in-situ-spray fibrin hydrogels exhibited huge promise of reversing polarization and fighting intracellular infections. Importantly, we revealed a hitherto undocumented treatment strategy for reducing the recurrence of chronic osteomyelitis and potentially improving the prognosis of chronic osteomyelitis patients.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Liposomes , Hydrogels/pharmacology , Hydrogels/therapeutic use , Staphylococcus aureus , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Fibrin/pharmacology
4.
Bioact Mater ; 26: 194-215, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36923267

ABSTRACT

Over the years, electroconductive hydrogels (ECHs) have been extensively applied for stimulating nerve regeneration and restoring locomotor function after peripheral nerve injury (PNI) with diabetes, given their favorable mechanical and electrical properties identical to endogenous nerve tissue. Nevertheless, PNI causes the loss of locomotor function and inflammatory pain, especially in diabetic patients. It has been established that bone marrow stem cells-derived exosomes (BMSCs-Exos) have analgesic, anti-inflammatory and tissue regeneration properties. Herein, we designed an ECH loaded with BMSCs-Exos (ECH-Exos) electroconductive nerve dressing to treat diabetic PNI to achieve functional recovery and pain relief. Given its potent adhesive and self-healing properties, this laminar dressing is convenient for the treatment of damaged nerve fibers by automatically wrapping around them to form a size-matched tube-like structure, avoiding the cumbersome implantation process. Our in vitro studies showed that ECH-Exos could facilitate the attachment and migration of Schwann cells. Meanwhile, Exos in this system could modulate M2 macrophage polarization via the NF-κB pathway, thereby attenuating inflammatory pain in diabetic PNI. Additionally, ECH-Exos enhanced myelinated axonal regeneration via the MEK/ERK pathway in vitro and in vivo, consequently ameliorating muscle denervation atrophy and further promoting functional restoration. Our findings suggest that the ECH-Exos system has huge prospects for nerve regeneration, functional restoration and pain relief in patients with diabetic PNI.

5.
Bioact Mater ; 25: 273-290, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36825223

ABSTRACT

At present, effective fixation and anti-infection implant materials represent the mainstay for the treatment of open fractures. However, external fixation can cause nail tract infections and is ineffective for fixing small fracture fragments. Moreover, closed reduction and internal fixation during the early stage of injury can lead to potential bone infection, conducive to bone nonunion and delayed healing. Herein, we designed a bone adhesive with anti-infection, osteogenic and bone adhesion fixation properties to promote reduction and fixation of open fractures and subsequent soft tissue repair. It was prepared by the reaction of gelatin (Gel) and oxidized starch (OS) with vancomycin (VAN)-loaded mesoporous bioactive glass nanoparticles (MBGNs) covalently cross-linked with Schiff bases. Characterization and adhesion experiments were conducted to validate the successful preparation of the Gel-OS/VAN@MBGNs (GOVM-gel) adhesive. Meanwhile, in vitro cell experiments demonstrated its good antibacterial effects with the ability to stimulate bone marrow mesenchymal stem cell (BMSCs) proliferation, upregulate the expression of alkaline phosphatase (ALP) and osteogenic proteins (RunX2 and OPN) and enhance the deposition of calcium nodules. Additionally, we established a rat skull fracture model and a subcutaneous infection model. The histological analysis showed that bone adhesive enhanced osteogenesis, and in vivo experiments demonstrated that the number of inflammatory cells and bacteria was significantly reduced. Overall, the adhesive could promote early reduction of fractures and antibacterial and osteogenic effects, providing the foothold for treatment of this patient population.

SELECTION OF CITATIONS
SEARCH DETAIL
...