Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Toxicology ; 506: 153867, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906242

ABSTRACT

Methylmercury (MeHg) is widely distributed in nature and is known to cause neurotoxic effects. This study aimed to examine the anti-MeHg activity of oleanolic acid-3-glucoside (OA3Glu), a synthetic oleanane-type saponin derivative, by evaluating its effects on motor function, pathology, and electrophysiological properties in a mouse model of MeHg poisoning. Mice were orally administered 2 or 4 mg·kg-1·d-1 MeHg with or without 100 µg·kg-1·d-1 OA3Glu 5x/week for four weeks. Motor function was evaluated using beam-walking and dynamic weight-bearing (DWB) tests. High-dose MeHg exposure significantly increased the frequency of stepping off the hind leg while crossing the beam in the beam-walking test, and increased weight on forelegs when moving freely in the DWB test. OA3Glu treatment alleviated motor abnormality caused by high-dose MeHg exposure in both motor function tests. Additionally, OA3Glu treatment reduced the number of contracted Purkinje cells frequently observed in the cerebellum of MeHg-treated groups, although cerebrum histology was similar in all experimental groups. The synaptic potential amplitude in the cerebellum decreased as MeHg exposure increased, which was restored by OA3Glu treatment. Even in the cerebrum, where the effects of MeHg were not observed, the amplitude of the field potential was suppressed with increasing MeHg exposure but was restored with OA3Glu treatment. Taken together, the study findings suggest that OA3Glu improves neurotransmission and movement disorders associated with MeHg exposure via protection of Purkinje cells in the cerebellum while ameliorating pre/post-synaptic deficits in the cerebral cortex in which no changes were observed at the tissue level, potentially providing a treatment to mitigate MeHg toxicity.

2.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38750803

ABSTRACT

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Subject(s)
Analgesics , Anthracenes , Carbamates , KCNQ Potassium Channels , Phenylenediamines , Animals , Male , Carbamates/pharmacology , Phenylenediamines/pharmacology , KCNQ Potassium Channels/antagonists & inhibitors , KCNQ Potassium Channels/drug effects , Anthracenes/pharmacology , Mice , Analgesics/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Neuralgia/drug therapy , Posterior Horn Cells/drug effects , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/physiology , Spinal Cord Dorsal Horn/drug effects
3.
J Clin Med ; 13(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276114

ABSTRACT

The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.

4.
J Neurochem ; 164(5): 658-670, 2023 03.
Article in English | MEDLINE | ID: mdl-36528843

ABSTRACT

Sulfatide is a sulfated glycosphingolipid that is present abundantly in myelin sheaths of the brain and spinal cord. It is synthesized by a cerebroside sulfotransferase encoded by Gal3st1, which catalyzes the transfer of sulfate from 3'-phosphoadenylylsulfate to galactosylceramide. We previously reported that Gal3st1 gene expression in the spinal cord is up-regulated 1 day after intraplantar injection of complete Freund's adjuvant (CFA), indicating that sulfatide is involved in inflammatory pain. In the present study, we found that intrathecal injection of sulfatide led to mechanical allodynia. Sulfatide caused levels of glial fibrillary acidic protein (GFAP) and nitric oxide in the spinal cord to increase. Mechanical allodynia induced by intrathecal injection of sulfatide was blocked by nitric oxide synthase inhibitors and by suppression of astrocyte activation by L-α-aminoadipate. These results suggest that sulfatide-induced mechanical allodynia involved glial activation and nitric oxide production. Blocking selectin, a sulfatide-binding protein, with bimosiamose attenuated sulfatide-induced allodynia and ameliorated CFA-induced mechanical allodynia during inflammatory pain. Finally, elevated levels of sulfatide concentration in the spinal cord were observed during CFA-induced inflammatory pain. The elevated sulfatide levels enhanced selectin activation in the spinal cord, resulting in mechanical allodynia. Our data suggest that sulfatide-selectin interaction plays a key role in inflammatory pain.


Subject(s)
Hyperalgesia , Sulfoglycosphingolipids , Humans , Hyperalgesia/metabolism , Nitric Oxide/metabolism , Pain/metabolism , Spinal Cord/metabolism , Inflammation/metabolism
5.
Pain ; 163(2): 334-349, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33990107

ABSTRACT

ABSTRACT: Normalization of the excitatory and inhibitory balance by increasing the levels of endogenous inhibitory neurotransmitters by blocking their reuptake is a promising therapeutic strategy for relieving chronic pain. Pharmacological blockade of spinal γ-aminobutyric acid (GABA) transporter subtypes 1 and 3 (GAT1 and GAT3) has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we explored the synaptic mechanisms underlying their analgesic effects in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of GAT inhibitors on miniature and evoked postsynaptic currents were examined. Behaviorally, GAT inhibitors were intrathecally applied to assess their effects on mechanical hypersensitivity in mice developing neuropathic pain after partial sciatic nerve ligation. The GAT1 inhibitor NNC-711 reduced the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of C-fiber-mediated EPSCs, and the GAT3 inhibitor SNAP-5114 reduced the amplitude of A-fiber-mediated and C-fiber-mediated EPSCs. These effects were antagonized by the GABAB receptor antagonist CGP55845. Consistently, the analgesic effect of intrathecally injected NNC-711 and SNAP-5114 in mice developing mechanical hypersensitivity after partial sciatic nerve ligation was abolished by CGP55845. Thus, GAT1 and GAT3 inhibitors exert distinct GABAB receptor-mediated inhibitory effects on excitatory synaptic transmission in the spinal dorsal horn, which most likely contributes to their analgesic effects.


Subject(s)
Posterior Horn Cells , Synaptic Transmission , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Excitatory Postsynaptic Potentials , Mice , gamma-Aminobutyric Acid/pharmacology
6.
J Pharmacol Sci ; 146(1): 33-39, 2021 May.
Article in English | MEDLINE | ID: mdl-33858653

ABSTRACT

Gabapentinoids such as gabapentin and pregabalin, which bind specifically to the α2δ subunit of voltage-gated Ca2+ channels, are used for first-line treatment of neuropathic pain. Here, we examined the analgesic effect of mirogabalin besilate (referred to simply as mirogabalin), a novel gabapentinoid, focusing on its action on the spinal cord and the descending noradrenergic pain inhibitory system. When administered systemically (10 and 30 mg/kg, intraperitoneally (i.p.)) and locally (10 and 30 µg, intracerebroventricularly (i.c.v.) or intrathecally (i.t.)) to mice, mirogabalin was found to exert analgesic effects on thermal (plantar test) and mechanical (von Frey test) hypersensitivity developing after partial sciatic nerve ligation. Notably, its analgesic effects (30 mg/kg, i.p. and 30 µg, i.c.v.) disappeared in mice pretreated with yohimbine hydrochloride (3 µg, i.t.). Moreover, in mice harboring a mutation in the α2δ-1 subunit resulting in substitution of arginine at position 217 with alanine to prevent gabapentinoid binding (R217A mutant mice), the analgesic effects of pregabalin and mirogabalin (30 µg, i.c.v., respectively) on mechanical hypersensitivity were almost completely suppressed. These results clearly demonstrate that mirogabalin also operates via the descending noradrenergic system, and that binding to the α2δ-1 subunit supraspinally is essential for the pain relief effect of gabapentinoids.


Subject(s)
Analgesics , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacology , Calcium Channels/metabolism , Neuralgia/drug therapy , Norepinephrine/metabolism , Animals , Bridged Bicyclo Compounds/metabolism , Calcium Channels/genetics , Drug Administration Routes , Female , Male , Mice , Mice, Inbred Strains , Mice, Mutant Strains , Mutation , Protein Binding/drug effects
7.
Biochem Biophys Res Commun ; 528(1): 174-178, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32482389

ABSTRACT

AIM: Oxytocin, a peptide hormone synthesized in the hypothalamic paraventricular nucleus, has been reported to participate in the regulation of learning and memory performance. However, no report has demonstrated the effect of oxytocin on the amyloid-beta (Aß)-induced impairment of synaptic plasticity. In this study, we examined the effects of oxytocin on the Aß-induced impairment of synaptic plasticity in mice. METHODS: To investigate the effect of oxytocin on synaptic plasticity, we prepared acute hippocampal slices for extracellular recording and assessed long-term potentiation (LTP) with perfusion of the Aß active fragment (Aß25-35) in the absence and presence of oxytocin. RESULTS: We found that oxytocin reversed the impairment of LTP induced by Aß25-35 perfusion in the mouse hippocampus. These effects were blocked by pretreatment with the selective oxytocin receptor antagonist L-368,899. Furthermore, the treatment with the ERK inhibitor U0126 and selective Ca2+-permeable AMPA receptor antagonist NASPM completely antagonized the effects of oxytocin. CONCLUSION: This is the first report to demonstrate that oxytocin could reverse the effects of Aß on hippocampal LTP in mice. We propose that ERK phosphorylation and Ca2+-permeable AMPA receptors are involved in this effect of oxytocin.


Subject(s)
Amyloid beta-Peptides/toxicity , Hippocampus/physiopathology , Neuronal Plasticity/drug effects , Oxytocin/pharmacology , Animals , Calcium/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippocampus/drug effects , Hippocampus/enzymology , Humans , Long-Term Potentiation/drug effects , Male , Mice , Phosphorylation/drug effects , Receptors, AMPA/metabolism
8.
Behav Brain Res ; 383: 112506, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31982462

ABSTRACT

Gabapentinoids, which are the common analgesics, are also thought to be an effective treatment for anxiety disorder, which is one of several psychiatric disorders triggered and exacerbated by stress. The aim of the present study was to investigate whether mirogabalin, a recently launched gabapentinoid, protects multiple brain functions against repeated restraint stress. Adult male ddY mice were restrained for 7 days (repeated restraint stress: 2 h/day) or for 30 min (single restraint stress). Mirogabalin (intraperitoneal, intracerebroventricular or intrahippocampal injection) was administered prior to the restraint stress. Y-maze, elevated-plus maze and c-Fos immunohistochemistry were performed to evaluate learning function, anxiety levels and hippocampal neuronal activities, respectively, after the 7th day of the repeated restraint stress. Intestinal function was evaluated in terms of defecation, which was scored after the 5th day of repeated restraint stress and by the number of fecal pellets excreted after a single session of restraint stress. Repeated restraint stress induced memory dysfunction, anxiety-like behavior, an abnormal defecation score and increased hippocampal c-Fos expression. These changes were prevented by systemic administration of mirogabalin. Abnormal defecation was also induced by single restraint stress, and was inhibited by both systemic and central administration of mirogabalin, suggesting that the effect on the intestinal function was also mediated via the central nervous system. Enhancement of c-Fos expression by repeated stress was decreased by intrahippocampal injection of mirogabalin. Together, these observations suggest that mirogabalin protects multiple brain functions from repeated stress, which may be mediated by inhibition of hippocampal neuron hyperactivation.


Subject(s)
Behavior, Animal/drug effects , Bridged Bicyclo Compounds/pharmacology , Eliminative Behavior, Animal/drug effects , Hippocampus/drug effects , Neurons/drug effects , Restraint, Physical/psychology , Stress, Psychological/psychology , Animals , Anxiety/physiopathology , Anxiety/psychology , Brain/drug effects , Brain/metabolism , Elevated Plus Maze Test , Hippocampus/cytology , Memory/drug effects , Memory Disorders/physiopathology , Memory Disorders/psychology , Mice , Proto-Oncogene Proteins c-fos/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological/physiopathology
9.
Neuroscience ; 428: 217-227, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31917338

ABSTRACT

Glycosphingolipids (GSLs) are abundant, ceramide-containing lipids in the nervous system that play key functional roles in pain and inflammation. We measured gene expression (Ugcg, St3gal5, St8sia1, B4galNT1, Ugt8a, and Gal3st1) of glycosyltransferases involved in GSL synthesis in murine dorsal root ganglion (DRG) and spinal cord after complete Freund's adjuvant (CFA)-induced unilateral hind-paw inflammation (1 day vs. 15 days). Chronic inflammation (15 days) sensitized both ipsilateral and contralateral paws to pain. One day of induced unilateral hind-paw inflammation (1d-IUHI) increased Ugcg, St8sia1, B4galnt1, and Gal3st1 expression in ipsilateral cord, suggesting that sulfatide and b-series gangliosides were also elevated. In addition, 1d-IUHI increased Ugcg, st3gal5 and Gal3st1 expression in contralateral cord, suggesting that sulfatide and a-/b-series gangliosides were elevated. By contrast, 1d-IUHI decreased Ugcg, St3gal5, and St8sia1 expression bilaterally in the DRG, suggesting that b-series gangliosides were depressed. Since intrathecal injection of b-series ganglioside induced mechanical allodynia in naïve mice, it seems reasonable that b-series gangliosides synthesized from upregulated St8sia1 in the ipsilateral spinal cord are involved in mechanical allodynia. By contrast, chronic inflammation led to a decrease of Ugcg, St3gal5, B4galnt1, and Gal3st1 expression in spinal cord bilaterally and an increase of St8sia1 expression in the ipsilateral DRG, suggesting that a-/b-series gangliosides in the spinal cord decreased and b-series gangliosides in ipsilateral DRG increased. These changes in glycosyltransferase gene expression in the DRG and the spinal cord may contribute to the modification of pain sensitivity in both inflamed and non-inflamed tissues and the transition from early to chronic inflammatory pain.


Subject(s)
Ganglia, Spinal/metabolism , Glycosphingolipids/metabolism , Glycosyltransferases/metabolism , Inflammation/metabolism , Spinal Cord/metabolism , Animals , Chronic Pain/physiopathology , Disease Models, Animal , Ganglia, Spinal/physiopathology , Glycosyltransferases/pharmacokinetics , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Inflammation/physiopathology , Male , Mice , Pain Measurement , Pain Threshold/physiology , Spinal Cord/physiopathology
10.
ACS Chem Neurosci ; 10(5): 2237-2242, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30913383

ABSTRACT

The cyclopropylmethyl group in classical δ opioid receptor (DOR) antagonist NTI, BNTX, and NTB was replaced with various electron-withdrawing groups to develop DOR inverse agonists. N-Benzyl NTB derivative SYK-657 was a potent DOR full inverse agonist and its potency was over 10-fold potent than that of a reference compound ICI-174,864. Intraperitoneal administration of SYK-657 induced the short-term memory improving effect in mice without abnormal behaviors.


Subject(s)
Analgesics, Opioid/pharmacology , Behavior, Animal/drug effects , Cognition/drug effects , Cognitive Dysfunction , Memory, Short-Term/drug effects , Receptors, Opioid, delta/agonists , Animals , Drug Inverse Agonism , Male , Mice , Restraint, Physical , Stress, Psychological
11.
Neurobiol Dis ; 124: 81-92, 2019 04.
Article in English | MEDLINE | ID: mdl-30423474

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Although increased production of prostaglandin E2 (PGE2) has been implicated in tissue damage in several pathological settings, the role of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, in dopaminergic neurodegeneration remains unclear. Here we show that mPGES-1 is up-regulated in the dopaminergic neurons of the substantia nigra of postmortem brain tissue from PD patients and in neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. The expression of mPGES-1 was also up-regulated in cultured dopaminergic neurons stimulated with 6-OHDA. The genetic deletion of mPGES-1 not only abolished 6-OHDA-induced PGE2 production but also inhibited 6-OHDA-induced dopaminergic neurodegeneration both in vitro and in vivo. Nigrostriatal projections, striatal dopamine content, and neurological functions were significantly impaired by 6-OHDA administration in wild-type (WT) mice, but not in mPGES-1 knockout (KO) mice. Furthermore, in cultured primary mesencephalic neurons, addition of PGE2 to compensate for the deficiency of 6-OHDA-induced PGE2 production in mPGES-1 KO neurons recovered 6-OHDA toxicity to almost the same extent as that seen in WT neurons. These results suggest that induction of mPGES-1 enhances 6-OHDA-induced dopaminergic neuronal death through excessive PGE2 production. Thus, mPGES-1 may be a valuable therapeutic target for treatment of PD.


Subject(s)
Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Prostaglandin-E Synthases/metabolism , Substantia Nigra/metabolism , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Oxidopamine/administration & dosage , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Primary Cell Culture , Prostaglandin-E Synthases/genetics
12.
J Pharmacol Sci ; 133(3): 162-167, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28302446

ABSTRACT

To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs) were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS) was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.


Subject(s)
Glycine Plasma Membrane Transport Proteins/physiology , Posterior Horn Cells/physiology , Animals , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice , Posterior Horn Cells/drug effects , Sarcosine/analogs & derivatives , Sarcosine/pharmacology , Serine/analogs & derivatives , Serine/pharmacology
13.
J Pharmacol Sci ; 133(1): 49-52, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28089228

ABSTRACT

Sialic acids are highly charged glycoresidues that are attached to glycoproteins or glycosphingolipids, and they are associated with various biological functions. Gangliosides, sialic acid-containing glycosphingolipids, are abundant in neural tissues and play important roles in the nervous system. Previous studies revealed that peripheral gangliosides are involved in nociceptive behavior and hyperalgesia. These observations prompted us to determine whether the sialic acid-cleaving enzyme sialidase affects pain signaling. Intraplantar injection of sialidase reduced mechanical allodynia during complete Freund's adjuvant-induced inflammation. We also found that ganglioside induces mechanical allodynia in naïve mice. These results suggest that sialyl conjugates in subcutaneous tissues modify allodynia.


Subject(s)
Hyperalgesia/complications , Hyperalgesia/drug therapy , Inflammation/complications , Neuraminidase/administration & dosage , Neuraminidase/pharmacology , Animals , Foot/pathology , Freund's Adjuvant , Gangliosides/pharmacology , Hyperalgesia/prevention & control , Inflammation/chemically induced , Inflammation/pathology , Injections , Male , Mice , Neuraminidase/therapeutic use , Pain Management
15.
Neuropeptides ; 49: 7-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481797

ABSTRACT

We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.


Subject(s)
Anti-Anxiety Agents/administration & dosage , Anxiety/drug therapy , Glucagon-Like Peptide 2/administration & dosage , Memory/drug effects , Adrenocorticotropic Hormone/administration & dosage , Animals , Brain/drug effects , Brain/metabolism , Brain Chemistry/drug effects , Lipopolysaccharides , Male , Mice , Motor Activity/drug effects , Serotonin/analysis
16.
J Pharmacol Sci ; 126(2): 136-45, 2014.
Article in English | MEDLINE | ID: mdl-25252797

ABSTRACT

Fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor, has been shown to exert analgesic effects in humans and laboratory animals. However, its effects on spinal nociceptive synaptic transmission have not been fully characterized. Here, whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of fluvoxamine on monosynaptic A-fiber- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) evoked in response to electrical stimulation of a dorsal root were studied. Fluvoxamine (10 - 100 µM) concentration-dependently suppressed both monosynaptic A-fiber- and C-fiber-mediated EPSCs, which were attenuated by the selective 5-HT1A receptor antagonist WAY100635. In the presence of the selective 5-HT3 receptor antagonist tropisetron, fluvoxamine hardly suppressed A-fiber-mediated EPSCs, whereas its inhibitory effect on C-fiber-mediated EPSCs was not affected. Although fluvoxamine increased the paired-pulse ratio of A-fiber-mediated EPSCs, it increased the frequency of spontaneous and miniature EPSCs (sEPSCs and mEPSCs). Since sEPSCs and mEPSCs appeared to arise largely from spinal interneurons, we then recorded strontium-evoked asynchronous events occurring after A-fiber stimulation, whose frequency was reduced by fluvoxamine. These results suggest that fluvoxamine reduces excitatory synaptic transmission from primary afferent fibers via presynaptic mechanisms involving 5-HT1A and/or 5-HT3 receptors, which may contribute to its analgesic effects.


Subject(s)
Fluvoxamine/pharmacology , Nociception/drug effects , Posterior Horn Cells/drug effects , Posterior Horn Cells/physiology , Selective Serotonin Reuptake Inhibitors/pharmacology , Synaptic Transmission/drug effects , Aging , Animals , Depression, Chemical , In Vitro Techniques , Male , Mice, Inbred Strains , Patch-Clamp Techniques
17.
Yakugaku Zasshi ; 134(3): 405-12, 2014.
Article in Japanese | MEDLINE | ID: mdl-24584022

ABSTRACT

Recent studies have revealed considerable evidence for our understanding of the mechanisms underlying the development and maintenance of chronic pain including neuropathic and inflammatory pain. It is considered that plastic changes in the spinal dorsal horn contribute to the amplification of pain signaling. Moreover, persistent pain affects brain function and also the endogenous descending pain regulatory system. To characterize these pathophysiological changes and pharmacological properties in chronic pain conditions at the synaptic level, we have employed in vitro electrophysiology in slices of the spinal cord and supraspinal regions such as brainstem and hippocampus of adult mice and in vivo electrophysiology in anesthetized rats. In particular, we have successfully prepared spinal slices with an attached dorsal root, where A-fiber- or C-fiber-evoked monosynaptic excitatory postsynaptic currents or miniature excitatory postsynaptic currents were recorded from voltage-clamped dorsal horn neurons. In anesthetized rats, C-fiber-evoked field potentials were recorded from the spinal dorsal horn in response to electrical stimulation of the sciatic nerve fibers, and their long-term potentiation was elicited to mimic increased synaptic efficacy after peripheral nerve injury. Of interest is the finding that some drugs exerted the injury-specific effects on synaptic transmission, thus strongly suggesting the importance of pharmacological analysis at the synaptic level combined with electrophysiological techniques to obtain pathophysiological information and new insights into drug research in this field.


Subject(s)
Chronic Pain/physiopathology , Electrophysiology/methods , Animals , Chronic Pain/drug therapy , Cyclopropanes/pharmacology , Evoked Potentials , Humans , Milnacipran , Neurons/physiology , Spine/physiopathology
18.
J Pharmacol Sci ; 119(1): 82-90, 2012.
Article in English | MEDLINE | ID: mdl-22641129

ABSTRACT

Voltage-dependent Ca(2+) channels (VDCCs) play a crucial role in the spinal pain transduction. We previously reported that nociceptive mechanical stimuli to the rat hindpaw evoked two types of ventral root discharges that increased during stimulation (during-discharges) and after cessation of stimulation (after-discharges). To explore the involvement of VDCCs in these ventral root discharges, several VDCC blockers were applied directly to the surface of the spinal cord. Spinalized rats were laminectomized. The fifth lumbar ventral root was sectioned and used for multi-unit efferent discharges recording. An agar pool was constructed on the first lumbar vertebra for drug application. Ethosuximide (a T-type VDCC blocker) had no effect on ventral root discharges. ω-Conotoxin GVIA (an N-type VDCC blocker) preferentially suppressed after-discharges. ω-Agatoxin IVA (a P/Q-type VDCC blocker), diltiazem, and verapamil (L-type VDCC blockers) nonselectively depressed both during- and after-discharges. The more selective L-type VDCC blocker nicardipine depressed only after-discharges and the depression was exhibited when nicardipine was microinjected into the dorsal horn, but not into the ventral horn. These findings suggested that N- and L-type VDCCs in the dorsal horn were involved in the generation of after-discharges and these blockers might be useful for treatment of persistent pain that involves the spinal pathway.


Subject(s)
Anterior Horn Cells/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/metabolism , Posterior Horn Cells/metabolism , Spinal Nerve Roots/metabolism , Animals , Anterior Horn Cells/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels, Q-Type/metabolism , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/metabolism , Male , Pain/drug therapy , Pain Management/methods , Posterior Horn Cells/drug effects , Rats , Rats, Wistar , Spinal Nerve Roots/drug effects
19.
J Cell Physiol ; 227(2): 618-29, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21448919

ABSTRACT

Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-ß and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.


Subject(s)
Bradykinin/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neurites/physiology , Actins/metabolism , Cell Line, Tumor , Gene Expression Regulation/physiology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Myristoylated Alanine-Rich C Kinase Substrate , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroblastoma/metabolism , Phosphorylation/physiology , Pseudopodia/physiology , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B2/metabolism , Signal Transduction
20.
Pain ; 152(4): 809-817, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21295405

ABSTRACT

Patients with chronic pain often have accompanying cognitive deficiency, which may reduce their quality of life and hamper efficient medical treatment. Alteration of extracellular glycine concentration may affect cognitive function and spinal pain signaling. In the present study, we assessed recognition memory by novel-object recognition and found that mice developing mechanical hypersensitivity after peripheral nerve injury exhibited impaired recognition ability for novelty, which was never observed in mice provided the selective glycine transporter 1 (GlyT1) inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS) systemically. Although systemic NFPS generated analgesia via inhibitory effects of glycine in the spinal cord, the cognitive impairment in neuropathic mice was not restored upon relief of pain alone by intrathecal injection of NFPS. Whole-cell recordings were then made from hippocampal CA1 pyramidal neurons, and the effect of exogenously applied glycine or its endogenous increase by blockade of GlyT1 with NFPS on N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) was investigated in slices prepared from neuropathic mice and mice subjected to sham treatment. In slices from neuropathic mice, NMDA-EPSCs were less potentiated by glycine, whereas they were augmented by NFPS even at lower concentrations. After treating the slices with either NFPS or the glial-selective metabolic blocker fluoroacetate, glycine potentiated NMDA-EPSCs equally in slices from neuropathic and sham-treated mice. These findings imply that chronic pain has a crucial influence on hippocampal plasticity related to cognitive function, and strongly suggest that increasing the extracellular level of glycine via blockade of GlyT1 is a potential therapeutic approach for chronic pain with memory impairment. Chronic pain crucially influences hippocampal plasticity related to cognitive function. Increasing the extracellular level of glycine via blockade of GlyT1 is a potential therapeutic approach for chronic pain with memory impairment.


Subject(s)
Cognition Disorders/etiology , Glycine/metabolism , Hippocampus/metabolism , Sciatic Neuropathy/complications , Sciatic Neuropathy/pathology , Animals , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Exploratory Behavior/physiology , Fluoroacetates/pharmacology , Glycine/pharmacology , Herb-Drug Interactions , Hippocampus/pathology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , In Vitro Techniques , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred Strains , Motor Activity/drug effects , N-Methylaspartate/pharmacology , Neurons/drug effects , Neurons/physiology , Pain Measurement , Pain Threshold/physiology , Patch-Clamp Techniques , Recognition, Psychology , Sarcosine/analogs & derivatives , Sarcosine/therapeutic use , Sciatic Neuropathy/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...