Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
JACS Au ; 3(8): 2237-2246, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37654590

ABSTRACT

Photocatalytic generation of H2O2 from water and O2 is a promising strategy for liquid solar-fuel production. Previously reported powder photocatalysts promote a subsequent oxidative/reductive decomposition of the H2O2 generated, thereby producing low-H2O2-content solutions. This study reports that Nafion (Nf)-integrated resorcinol-formaldehyde (RF) semiconducting resin powders (RF@Nf), synthesized by polycondensation of resorcinol and formaldehyde with an Nf dispersion solution under high-temperature hydrothermal conditions, exhibit high photocatalytic activities and produce high-H2O2-content solutions. Nf acts as a surface stabilizer and suppresses the growth of RF resins. This generates small Nf-woven resin particles with large surface areas and efficiently catalyze water oxidation and O2 reduction. The Nf-woven resin surface, due to its hydrophobic nature, hinders the access of H2O2 and suppresses its subsequent decomposition. The simulated-sunlight irradiation of the resins in water under atmospheric pressure of O2 stably generates H2O2, producing high-H2O2-content solutions with more than 0.06 wt % H2O2 (16 mM).

2.
Chemphyschem ; 24(22): e202300477, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37632303

ABSTRACT

Sulfur vacancy on an MoS2 basal plane plays a crucial role in device performance and catalytic activity; thus, an understanding of the electronic states of sulfur vacancies is still an important issue. We investigate the electronic states on an MoS2 basal plane by ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and density functional theory calculations while heating the system in hydrogen. The AP-XPS results show a decrease in the intensity ratio of S 2p to Mo 3d, indicating that sulfur vacancies are formed. Furthermore, low-energy components are observed in Mo 3d and S 2p spectra. To understand the changes in the electronic states induced by sulfur vacancy formation at the atomic scale, we calculate the core-level binding energies for the model vacancy surfaces. The calculated shifts for Mo 3d and S 2p with the formation of sulfur vacancy are consistent with the experimentally observed binding energy shifts. Mulliken charge analysis indicates that this is caused by an increase in the electronic density associated with the Mo and S atoms around the sulfur vacancy as compared to the pristine surface. The present investigation provides a guideline for sulfur vacancy engineering.

3.
ACS Appl Mater Interfaces ; 15(32): 38463-38473, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37487143

ABSTRACT

Organic structure-directing agent-free steam-assisted conversion and Cs+ ion exchange were used to transform the faujasite (FAU)-type zeolite to the Cs+-type chabazite/phillipsite (CHA/PHI) composite zeolite. Compared with the pure PHI-type zeolite, the Cs+-type CHA/PHI zeolite showed gate-opening CO2 adsorption behavior and good thermal stability. In situ powder X-ray diffraction (PXRD) of the CO2 adsorption was measured to elucidate the mechanism for the gate-opening adsorption on the CHA/PHI zeolite. The Na+-type CHA/PHI zeolite did not show such adsorption behavior, and the PXRD pattern of the Na+-type CHA/PHI zeolite did not change with increasing CO2 partial pressure, which suggests that this unique adsorption behavior was caused by the PHI framework transition or Cs+ ions moving in both the CHA and PHI frameworks. Furthermore, in situ Fourier-transform infrared spectra of CO2 adsorption and CO2 breakthrough measurement on the Cs+-type CHA/PHI zeolite suggest that the CHA and PHI frameworks in the CHA/PHI zeolite shared eight-membered-ring windows and that CO2 molecules could easily diffuse from a CHA cage to a PHI framework. The ideal adsorbed solution theory was used to calculate the CO2/N2 separation selectivity for the Cs+-type CHA/PHI zeolite. At 298 and 318 K, the Cs+-type CHA/PHI composite zeolite showed a high CO2/N2 separation coefficient of >10,000 compared with other zeolites with high CO2 adsorption capacity. Furthermore, the CO2 working capacity was calculated for the Cs+-type CHA/PHI zeolite in both the pressure- and temperature-swing processes, and the results showed that the CHA/PHI composite zeolite could selectively separate CO2 from the CO2/N2 gas mixtures released from power generation plants operating using these processes.

4.
JACS Au ; 3(5): 1403-1412, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37234114

ABSTRACT

HClO is typically manufactured from Cl2 gas generated by the electrochemical oxidation of Cl- using considerable electrical energy with a large concomitant emission of CO2. Therefore, renewable energy-driven HClO generation is desirable. In this study, we developed a strategy for stable HClO generation by sunlight irradiation of a plasmonic Au/AgCl photocatalyst in an aerated Cl- solution at ambient temperature. Plasmon-activated Au particles by visible light generate hot electrons, which are consumed by O2 reduction, and hot holes, which oxidize the lattice Cl- of AgCl adjacent to the Au particles. The formed Cl2 is disproportionated to afford HClO, and the removed lattice Cl- are compensated by the Cl- in the solution, thus promoting a catalytic HClO generation cycle. A solar-to-HClO conversion efficiency of ∼0.03% was achieved by simulated sunlight irradiation, where the resultant solution contained >38 ppm (>0.73 mM) of HClO and exhibited bactericidal and bleaching activities. The strategy based on the Cl- oxidation/compensation cycles will pave the way for sunlight-driven clean, sustainable HClO generation.

5.
ACS Appl Bio Mater ; 6(9): 3451-3462, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37184656

ABSTRACT

Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.


Subject(s)
Cyclodextrins , Metal-Organic Frameworks , Cyclodextrins/chemistry , Crystallization , Pharmaceutical Preparations , Porosity , Solubility , Metal-Organic Frameworks/chemistry
6.
Small ; 19(34): e2208287, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093189

ABSTRACT

For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .

7.
Small ; 19(33): e2300672, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37072832

ABSTRACT

Laminar membranes comprising graphene oxide (GO) and metal-organic framework (MOF) nanosheets benefit from the regular in-plane pores of MOF nanosheets and thus can support rapid water transport. However, the restacking and agglomeration of MOF nanosheets during typical vacuum filtration disturb the stacking of GO sheets, thus deteriorating the membrane selectivity. Therefore, to fabricate highly permeable MOF nanosheets/reduced GO (rGO) membranes, a two-step method is applied. First, using a facile solvothermal method, ZnO nanoparticles are introduced into the rGO laminate to stabilize and enlarge the interlayer spacing. Subsequently, the ZnO/rGO membrane is immersed in a solution of tetrakis(4-carboxyphenyl)porphyrin (H2 TCPP) to realize in situ transformation of ZnO into Zn-TCPP in the confined interlayer space of rGO. By optimizing the transformation time and mass loading of ZnO, the obtained Zn-TCPP/rGO laminar membrane exhibits preferential orientation of Zn-TCPP, which reduces the pathway tortuosity for small molecules. As a result, the composite membrane achieves a high water permeance of 19.0 L m-2  h-1  bar-1 and high anionic dye rejection (>99% for methyl blue).

8.
J Colloid Interface Sci ; 638: 513-523, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36764245

ABSTRACT

Here we report the synthesis of a zeolitic imidazolate framework with RHO topology (RHO-Zn(eim)2; eim is the deprotonated anion of 2-ethylimidazole (Heim)) in the aqueous phase. Zn(eim)2 crystals were prepared by the reaction between Heim and zinc acetate in deionized water. The products prepared at relatively high Heim/Zn molar ratios were Zn(eim)2 whose structure assigned to RHO, qtz and ANA topologies. Zn(eim)2 obtained under static condition had porous RHO structure, while under stirred condition, nonporous dense qtz and ANA structures were formed. This study revealed that the formation of RHO porous structure requires the template effect of excess Heim. The RHO-Zn(eim)2 crystals possessed high surface area and micropore volume, whose morphology consisted of a rhombic dodecahedron. RHO-Zn(eim)2 exhibited high adsorption capacity (4 mmol/g) for hexane and cyclohexane. Due to the hydrophobic nature of RHO-Zn(eim)2, water vapor was hardly adsorbed. Although RHO-Zn(eim)2 was stable in the presence of water vapor, it became nonporous upon hydrolysis in aqueous solution. In contrast, partial carbonization of topmost surface improved the structural stability against hydrolysis by water, while maintaining the adsorption capacity and increasing the adsorption rate.

9.
Front Microbiol ; 14: 1340033, 2023.
Article in English | MEDLINE | ID: mdl-38304862

ABSTRACT

This research aims to elucidate the physiological mechanisms behind the accidental acquisition of high-concentration cesium ions (Cs+) tolerance of Escherichia coli and apply this understanding to develop bioremediation technologies. Bacterial Cs+ resistance has attracted attention, but its physiological mechanism remains largely unknown and poorly understood. In a prior study, we identified the Cs+/H+ antiporter TS_CshA in Microbacterium sp. TS-1, resistant to high Cs+ concentrations, exhibits a low Cs+ affinity with a Km value of 370 mM at pH 8.5. To enhance bioremediation efficacy, we conducted random mutagenesis of TS_cshA using Error-Prone PCR, aiming for higher-affinity mutants. The mutations were inserted downstream of the PBAD promoter in the pBAD24 vector, creating a mutant library. This was then transformed into E. coli-competent cells. As a result, we obtained a Cs+-resistant strain, ZX-1, capable of thriving in 400 mM CsCl-a concentration too high for ordinary E. coli. Unlike the parent strain Mach1™, which struggled in 300 mM CsCl, ZX-1 showed robust growth even in 700 mM CsCl. After 700 mM CsCl treatment, the 70S ribosome of Mach1™ collapsed, whereas ZX-1 and its derivative ΔZX-1/pBR322ΔAp remained stable. This means that the ribosomes of ZX-1 are more stable to high Cs+. The inverted membrane vesicles from strain ZX-1 showed an apparent Km value of 28.7 mM (pH 8.5) for Cs+/H+ antiport activity, indicating an approximately 12.9-fold increase in Cs+ affinity. Remarkably, the entire plasmid isolated from ZX-1, including the TS_cshA region, was mutation-free. Subsequent whole-genome analysis of ZX-1 identified multiple SNPs on the chromosome that differed from those in the parent strain. No mutations in transporter-related genes were identified in ZX-1. However, three mutations emerged as significant: genes encoding the ribosomal bS6 modification enzyme RimK, the phage lysis regulatory protein LysB, and the flagellar base component protein FlgG. These mutations are hypothesized to affect post-translational modifications, influencing the Km value of TS_CshA and accessory protein expression. This study unveils a novel Cs+ resistance mechanism in ZX-1, enhancing our understanding of Cs+ resistance and paving the way for developing technology to recover radioactive Cs+ from water using TS_CshA-expressing inverted membrane vesicles.

10.
Phys Chem Chem Phys ; 24(36): 21705-21713, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069673

ABSTRACT

Hydrogen spillover is a crucial process in the selective hydrogenation reactions on Pd/Cu single atom alloy catalysts. In this study, we report the atomic-scale perspective of these processes on the single atom alloy catalyst Pd/Cu(111) based on the experimental and theoretical results, including infrared reflection absorption spectroscopy (IRAS), temperature programmed desorption (TPD), high-resolution X-ray photoelectron spectroscopy (HR-XPS), and density functional theory (DFT) calculations for core-level excitation. The hydrogen spillover onto Cu(111) was successfully observed in real time using time-resolved IRAS measurements at 80 K. The chemical shifts of Pd 3d5/2 indicate that H2 is dissociated and adsorbed at the Pd site. In addition, a "two-step" chemical shift of the Pd 3d5/2 binding energy was observed, indicating two types of hydrogen adsorption states at the Pd site. The proposed mechanism of the hydrogen dissociation and spillover processes is as follows: (i) a hydrogen molecule is dissociated at a Pd site, and the hydrogen atoms are adsorbed on the Pd site; (ii) the number of hydrogen atoms on the Pd site increases up to three; and (iii) the hydrogen atoms will spill over onto the Cu surface.

11.
Plant Biotechnol (Tokyo) ; 39(1): 37-42, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35800963

ABSTRACT

During embryogenesis of eudicots, the apical region of the embryo develops two cotyledon primordia and the shoot meristem. In Arabidopsis thaliana, this process is dependent on the functionally redundant activities of the CUP-SHAPED COTYLEDON (CUC) transcription factors, namely CUC1, CUC2, and CUC3, as well as the phytohormone auxin. However, the relationship between the CUC proteins and auxin has yet to be fully elucidated. In the present study, we examined whether the expression of auxin biosynthetic genes is dependent on CUC gene activities. Comprehensive quantitative RT-PCR analysis of the main auxin biosynthetic gene families of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE RELATED and YUCCA (YUC) showed that YUC1 and YUC4 expression levels were lower in cuc double mutant embryos than the expression levels of these genes in wild type embryos. Reporter analysis also revealed that the expression of YUC1 and YUC4 in the cotyledon boundary region was reduced in cuc double mutant embryos. In contrast, the loss of function mutation in the SHOOT MERISTEMLESS gene, a shoot stem cell regulator that acts downstream of the CUC genes, did not markedly affect YUC1 expression levels. These results demonstrate that CUC genes play an important role in the regulation of auxin biosynthetic gene expression during embryogenesis; furthermore, they raise the possibility that the auxin produced by this regulation contributes to cotyledon boundary development.

12.
ACS Omega ; 7(23): 19600-19605, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721928

ABSTRACT

A new type of mineral carbonation process for concrete sludge, a waste of fresh concrete under hydration, was developed, and the carbonation performances of the process were examined by laboratory-scale experiments. The process is composed of two steps; filtration of concrete sludge and bubbling of CO2 into the filtrate to form calcium carbonate. Model concrete sludge, a mixture of cement and water, was filtered through a cellulose filter after hydration for 24 h to obtain a solution containing dissolved calcium ions. Then, the model flue gas containing CO2 (10%) was bubbled through the filtrate solution, and calcium carbonate was precipitated by the carbonation reaction. About 3% of calcium in the concrete sludge could be extracted into the filtrate in a single filtration step, and more than 95% of dissolved calcium was recovered as calcium carbonate by the bubbling of CO2. The obtained calcium carbonate was calcite with a high purity (>95%) and 5-10 µm. The solid residue (concrete sludge) after filtration was mixed with fresh water and filtered through a cellulose filter. Then, the model flue gas was bubbled into the filtrate solution for carbonation. This filtration-bubbling step was repeated 5 times, and 10.8% of calcium in the feed cement was extracted into the filtrates in total. More than 95% of the extracted calcium could be recovered as calcium carbonate with high purity (>97%), and the overall conversion of calcium in the feed cement to calcium carbonate was 10.1%. The purity of calcium carbonate and the calcium conversion were much higher than those for the direct bubbling method, where the model flue gas is bubbled into concrete sludge.

13.
Langmuir ; 38(23): 7137-7145, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35522588

ABSTRACT

Sunlight-driven photocatalytic dinitrogen (N2) fixation with water at ambient conditions is of vital importance for a sustainable energy society. The efficiency of this reaction, however, is still low because of the difficulty in promoting both water oxidation and N2 reduction reactions. Herein, we report that a high-phosphorus-doped carbon nitride with surface nitrogen vacancies (PCN(V)) synthesized by thermal condensation under a hydrogen (H2) atmosphere using phosphorus oxide (P2O5) as a phosphorus source efficiently promotes N2 fixation. The large numbers of the doped P atoms on the PCN(V)-P2O5 catalysts enhance the oxidation of water, while the N vacancies reduce N2, facilitating efficient ammonia (NH3) generation with an apparent quantum yield at 420 nm of 3.4%. Simulated sunlight illumination of the catalyst in water under N2 bubbling produces NH3 with a solar-to-chemical conversion efficiency of 0.16%, which is the highest efficiency among the previously reported powder photocatalysts.

14.
ACS Omega ; 7(15): 12971-12977, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35474795

ABSTRACT

Nowadays, the increase in plastic waste is causing serious environmental problems. Catalytic cracking has been considered a promising candidate to solve these problems. Catalytic cracking has emerged as an attractive process that can produce valuable products from plastic wastes. Solid acid catalysts such as zeolites decompose the plastic waste at a lower temperature. The lower decomposition temperature may be desirable for practical use. Herein, we synthesized both Zr- and Al-incorporated Beta zeolite using amorphous ZrO2-SiO2. The optimized Zr content in the dry gel allowed the enhancement of Lewis acidity without a significant loss of Brønsted acidity. The enhancement of Lewis acidity was mainly due to Zr species incorporated into the zeolite framework. Thanks to the enhanced Lewis acidity without any significant loss of Brønsted acidity, higher polymer decomposition efficiency was achieved than a conventional Beta zeolite.

15.
ACS Mater Au ; 2(6): 709-718, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36855546

ABSTRACT

Photocatalytic generation of H2O2 from water and O2 under sunlight is a promising artificial photosynthesis reaction to generate renewable fuel. We previously found that resorcinol-formaldehyde resin powders prepared with a high-temperature hydrothermal method become semiconductors comprising π-conjugated/π-stacked benzenoid-quinoid donor-acceptor resorcinol units and are active for photocatalytic H2O2 generation. Here, we have prepared phenol-resorcinol-formaldehyde resins with small amounts of phenol (∼5 mol % relative to resorcinol), which show enhanced photocatalytic activity. Incorporating phenol bearing a single -OH group in the resin matrices relaxes the restriction on the arrangement of the aromatic rings originating from the H-bonding interactions between the resorcinol -OH groups. This creates stronger donor-acceptor π-stacking and increases the electron conductivity of the resins. We have demonstrated that simulated sunlight illumination of the resins in water under an atmospheric pressure of O2 stably generated H2O2 with more than 0.9% solar-to-chemical conversion efficiency.

16.
Small ; 17(49): e2105781, 2021 12.
Article in English | MEDLINE | ID: mdl-34719868

ABSTRACT

Nanoplastics are likely ubiquitous in the environment, and their potential toxic effects are a concern. However, quantitative information about the distribution of nanoplastics is still lacking, and toxicity tests are limited to a few select polymers because of the lack of appropriate standard materials, which should be nanoscale particles with standardizable morphologies, properties comparable to those of commercial polymers, and no impurities. Here, a precipitation-based method for preparing spherical nanoscale particles without the introduction of impurities is developed. The similarity of the molecular weight distributions, crystallinities, and thermal properties of five major polymers prepared using this method-low-density polyethylene, high-density polyethylene, polypropylene, polyvinyl chloride, and polystyrene-to those of commercial polymers indicate their potential for use as standard nanoplastic particles. This study provides a fundamental approach for the synthesis of standard nanoplastic particles that will facilitate quantification of the concentrations of nanoplastics in the environment and tests of their toxicity, which are required to assess the risks associated with exposure to them.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Microplastics , Plastics , Polymers , Polystyrenes
17.
Sci Rep ; 11(1): 18820, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545119

ABSTRACT

Coconut rhinoceros beetle (CRB), Oryctes rhinoceros, is a pest of palm trees in the Pacific. Recently, a remarkable degree of palm damage reported in Guam, Hawaii, Papua New Guinea and Solomon Islands has been associated with a particular haplotype (clade I), known as "CRB-G". In the Palau Archipelago, both CRB-G and another haplotype (clade IV) belonging to the CRB-S cluster coexist in the field. In this study, more than 75% of pheromone trap-captured adults of both haplotypes were Oryctes rhinoceros nudivirus (OrNV)-positive by PCR. No significant difference in OrNV prevalence between the haplotypes was detected. In PCR-positive CRB-G tissue specimens from Palau, viral particles were observed by electron microscopy. Hemocoel injection of CRB larvae with crude virus homogenates from these tissues resulted in viral infection and mortality. OrNV isolated from Palauan-sourced CRB was designated as OrNV-Palau1. Both OrNV-Palau1 and OrNV-X2B, a CRB biological control isolate released in the Pacific, were propagated using the FRI-AnCu-35 cell line for production of inoculum. However, the OrNV-Palau1 isolate exhibited lower viral production levels and longer larval survival times compared to OrNV-X2B in O. rhinoceros larvae. Full genome sequences of the OrNV-Palau1 and -X2B isolates were determined and found to be closely related to each other. Altogether these results suggest CRB adults in Palau are infected with a less virulent virus, which may affect the nature and extent of OrNV-induced pathology in Palauan populations of CRB.


Subject(s)
Coleoptera/genetics , Coleoptera/virology , Nudiviridae/genetics , Animals , Coleoptera/metabolism , DNA Viruses/genetics , Genome, Viral/genetics , Haplotypes/genetics , Host Microbial Interactions/genetics , Larva/genetics , Nudiviridae/pathogenicity , Palau , Pest Control, Biological/methods , Polymerase Chain Reaction/methods
18.
J Am Chem Soc ; 143(32): 12590-12599, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34292725

ABSTRACT

The generation of hydrogen peroxide (H2O2) from water and dioxygen by sunlight-driven heterogeneous photocatalysis is a promising method for the artificial photosynthesis of a liquid solar fuel. We previously found that resorcinol-formaldehyde (RF) resin powders prepared by high-temperature hydrothermal synthesis act as highly active semiconductor photocatalysts for H2O2 generation. Herein, we report that RF resin powders doped with poly(3-hexylthiophene-2,5-diyl) (RF/P3HT) exhibit enhanced photocatalytic activities. The highly dispersed P3HT within the resin particles created charge transfer complexes with the conduction band of the resin via electron donation, facilitating efficient transfer of the photogenerated conduction band electrons through P3HT. This enhanced charge separation promoted efficient water oxidation and O2 reduction. The solar-to-chemical conversion efficiency for H2O2 generation on the RF/P3HT resin in water under simulated sunlight irradiation with atmospheric pressure of O2 was ∼1.0%, which is the highest efficiency reported for powder catalysts in artificial photosynthesis.

19.
ACS Omega ; 6(24): 15564-15571, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179600

ABSTRACT

Mineral carbonation, which is CO2 fixation through a carbonation reaction using alkaline earth metals, is being investigated as a carbon capture and utilization method to reduce CO2 atmospheric emissions. Concrete sludge is an alkali waste material from the concrete industry and contains abundant calcium components. We investigated the applicability of concrete sludge for mineral carbonation. In this study, gas containing CO2 was bubbled through the model concrete sludge solution and the effects of the solid-liquid ratio, bubbling time, gas flow rate, and the partial pressure of CO2 on the CO2 fixation ratio and fixation rate were investigated. The CO2 fixation ratio decreased with increasing CO2 bubbling time, CO2 flow rate, and CO2 partial pressure. The CO2 fixation rate increased with increasing CO2 flow rate and CO2 partial pressure. The formation of calcite, a form of calcium carbonate, was confirmed.

20.
Phys Rev Lett ; 125(12): 126802, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016747

ABSTRACT

This work demonstrates significant line narrowing of a surface multipole plasmon (MP) by modifying the surface electronic wave function with two-dimensional materials (2DMs): graphene and hexagonal boron nitride. This is found in an optical reflectivity of alkali atoms (Cs or K) on an Ir(111) surface covered with the 2DMs. The reduction in reflectivity induced by deposition of the alkali atoms becomes as large as 20% at ∼2 eV, which is ascribed to a MP of a composite of alkali/2DM/alkali/Ir multilayer structure. The linewidth of the MP band becomes as narrow as 0.2 eV by the presence of the 2DM between the two alkali layers. A numerical simulation by time-dependent density functional theory with a jellium model reveals that the density of states of the surface localized state is sharpened remarkably by the 2DMs that decouple the outermost alkali layer from the Ir bulk. Consequently, a local field enhancement of an order of 10^{5} is achieved by ultimate confinement of the MP within the outermost alkali layer. This work leads to a novel strategy for reducing plasmon dissipation in an atomically thin layer via atomic scale modification of surface structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...