Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Adv Exp Med Biol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811487

ABSTRACT

One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244676

ABSTRACT

Very long-chain fatty acids (VLCFAs) are degraded exclusively in peroxisomes, as evidenced by the accumulation of VLCFAs in patients with certain peroxisomal disorders. Although accumulation of VLCFAs is considered to be associated with health issues, including neuronal degeneration, the mechanisms underlying VLCFAs-induced tissue degeneration remain unclear. Here, we report the toxic effect of VLCFA and protective effect of C18: 1 FA in peroxisome-deficient CHO cells. We examined the cytotoxicity of saturated and monounsaturated VLCFAs with chain-length at C20-C26, and found that longer and saturated VLCFA showed potent cytotoxicity at lower accumulation levels. Furthermore, the extent of VLCFA-induced toxicity was found to be associated with a decrease in cellular C18:1 FA levels. Notably, supplementation with C18:1 FA effectively rescued the cells from VLCFA-induced apoptosis without reducing the cellular VLCFAs levels, implying that peroxisome-deficient cells can survive in the presence of accumulated VLCFA, as long as the cells keep sufficient levels of cellular C18:1 FA. These results suggest a therapeutic potential of C18:1 FA in peroxisome disease and may provide new insights into the pharmacological effect of Lorenzo's oil, a 4:1 mixture of C18:1 and C22:1 FA.


Subject(s)
Oleic Acid , Peroxisomes , Animals , Cricetinae , Humans , Oleic Acid/pharmacology , Oleic Acid/metabolism , Peroxisomes/metabolism , Fatty Acids/metabolism , Cricetulus , CHO Cells , Fatty Acids, Nonesterified/metabolism , Apoptosis
3.
J Med Invest ; 70(3.4): 403-410, 2023.
Article in English | MEDLINE | ID: mdl-37940524

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder associated with peroxisomal dysfunction. Patients with this rare disease accumulate very long-chain fatty acids (VLCFAs) in their bodies because of impairment of peroxisomal VLCFA ?-oxidation. Several clinical types of X-ALD, ranging from mild (axonopathy in the spinal cord) to severe (cerebral demyelination), are known. However, the molecular basis for this phenotypic variability remains largely unknown. In this study, we determined plasma ceramide (CER) profile using liquid chromatography-tandem mass spectrometry. We characterized the molecular species profile of CER in the plasma of patients with mild (adrenomyeloneuropathy;AMN) and severe (cerebral) X-ALD. Eleven X-ALD patients (five cerebral, five AMN, and one carrier) and 10 healthy volunteers participated in this study. Elevation of C26:0 CER was found to be a common feature regardless of the clinical types. The level of C26:1 CER was significantly higher in AMN but not in cerebral type, than that in healthy controls. The C26:1 CER level in the cerebral type was significantly lower than that in the AMN type. These results suggest that a high level of C26:0 CER, along with a control level of C26:1 CER, is a characteristic feature of the cerebral type X-ALD. J. Med. Invest. 70 : 403-410, August, 2023.


Subject(s)
Adrenoleukodystrophy , Ceramides , Humans , Adrenoleukodystrophy/genetics , Ceramides/blood
4.
J Biochem ; 175(1): 115-124, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37827526

ABSTRACT

A convenient method for the determination of plant sphingolipids (glycosylinositol phosphoceramide, GIPC; glucosylceramide, GluCer; phytoceramide 1-phosphate, PC1P and phytoceramide, PCer) was developed. This method includes the extraction of lipids using 1-butanol, alkali hydrolysis with methylamine and separation by TLC. The amounts of sphingolipids in the sample were determined based on the relative intensities of standard sphingolipids visualized by primulin/UV on TLC. Using this method, we found that almost all GIPCs were degraded in response to tissue homogenization in cruciferous plants (cabbage, broccoli and Arabidopsis thaliana). The decrease in GIPCs was compensated for by increases in PC1P and PCer, indicating that GIPC was degraded by hydrolysis at the D and C positions of GIPC, respectively. In carrot roots and leaves, most of GIPC degradation was compensated for by an increase in PCer. In rice roots, the decrease in GIPCs was not fully explained by the increases in PC1P and PCer, indicating that enzymes other than phospholipase C and D activities operated. As the visualization of lipids on TLC is useful for detecting the appearance or disappearance of lipids, this method will be available for the characterization of metabolism of sphingolipids in plants.


Subject(s)
Arabidopsis , Brassica , Glycosphingolipids/metabolism , Sphingolipids/metabolism , Plants/metabolism , Arabidopsis/metabolism
5.
J Lipid Res ; 64(11): 100450, 2023 11.
Article in English | MEDLINE | ID: mdl-37751791

ABSTRACT

Sphingosine 1-phosphate (S1P) has been implicated in brown adipose tissue (BAT) formation and energy consumption; however, the mechanistic role of sphingolipids, including S1P, in BAT remains unclear. Here, we showed that, in mice, BAT activation by cold exposure upregulated mRNA and protein expression of the S1P-synthesizing enzyme sphingosine kinase 1 (SphK1) and S1P production in BAT. Treatment of wild-type brown adipocytes with exogenous S1P or S1P receptor subtype-selective agonists stimulated triglyceride (TG) breakdown only marginally, compared with noradrenaline. However, genetic deletion of Sphk1 resulted in hypothermia and diminished body weight loss upon cold exposure, suggesting that SphK1 is involved in thermogenesis through mechanisms different from receptor-mediated, extracellular action of S1P. In BAT of wild-type mice, SphK1 was localized largely in the lysosomes of brown adipocytes. In the brown adipocytes of Sphk1-/- mice, the number of lysosomes was reduced and lysosomal function, including proteolytic activity, acid esterase activity, and motility, was impaired. Concordantly, nuclear translocation of transcription factor EB, a master transcriptional regulator of lysosome biogenesis, was reduced, leading to decreased mRNA expression of the lysosome-related genes in Sphk1-/- BAT. Moreover, BAT of Sphk1-/- mice showed greater TG accumulation with dominant larger lipid droplets in brown adipocytes. Inhibition of lysosomes with chloroquine resulted in a less extent of triglyceride accumulation in Sphk1-/- brown adipocytes compared with wild-type brown adipocytes, suggesting a reduced lysosome-mediated TG breakdown in Sphk1-/- mice. Our results indicate a novel role of SphK1 in lysosomal integrity, which is required for TG breakdown and thermogenesis in BAT.


Subject(s)
Adipocytes, Brown , Signal Transduction , Mice , Animals , Adipocytes, Brown/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/metabolism , Adipose Tissue, Brown/metabolism , RNA, Messenger/metabolism , Lysophospholipids/metabolism , Triglycerides/metabolism
6.
Commun Biol ; 6(1): 524, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193762

ABSTRACT

Cyclic phosphatidic acid (cPA) is a lipid mediator, which regulates adipogenic differentiation and glucose homeostasis by suppressing nuclear peroxisome proliferator-activated receptor γ (PPARγ). Glycerophosphodiesterase 7 (GDE7) is a Ca2+-dependent lysophospholipase D that localizes in the endoplasmic reticulum. Although mouse GDE7 catalyzes cPA production in a cell-free system, it is unknown whether GDE7 generates cPA in living cells. Here, we demonstrate that human GDE7 possesses cPA-producing activity in living cells as well as in a cell-free system. Furthermore, the active site of human GDE7 is directed towards the luminal side of the endoplasmic reticulum. Mutagenesis revealed that amino acid residues F227 and Y238 are important for catalytic activity. GDE7 suppresses the PPARγ pathway in human mammary MCF-7 and mouse preadipocyte 3T3-L1 cells, suggesting that cPA functions as an intracellular lipid mediator. These findings lead to a better understanding of the biological role of GDE7 and its product, cPA.


Subject(s)
PPAR gamma , Phosphatidic Acids , Mice , Animals , Humans , Phosphatidic Acids/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Lysophospholipids/metabolism , Endoplasmic Reticulum/metabolism , Phosphoric Diester Hydrolases/genetics
7.
Article in English | MEDLINE | ID: mdl-36460260

ABSTRACT

One of the major functions of peroxisomes in mammals is oxidation of very long-chain fatty acids (VLCFAs). Genetic defects in peroxisomal ß-oxidation result in the accumulation of VLCFAs and lead to a variety of health problems, such as demyelination of nervous tissues. However, the mechanisms by which VLCFAs cause tissue degeneration have not been fully elucidated. Recently, we found that the addition of small amounts of isopropanol can enhance the solubility of saturated VLCFAs in an aqueous medium. In this study, we characterized the biological effect of extracellular VLCFAs in peroxisome-deficient Chinese hamster ovary (CHO) cells, neural crest-derived pheochromocytoma cells (PC12), and immortalized adult Fischer rat Schwann cells (IFRS1) using this solubilizing technique. C20:0 FA was the most toxic of the C16-C26 FAs tested in all cells. The basis of the toxicity of C20:0 FA was apoptosis and was observed at 5 µM and 30 µM in peroxisome-deficient and wild-type CHO cells, respectively. The sensitivity of wild-type CHO cells to cytotoxic C20:0 FA was enhanced in the presence of a peroxisomal ß-oxidation inhibitor. Further, a positive correlation was evident between cell toxicity and the extent of intracellular accumulation of toxic FA. These results suggest that peroxisomes are pivotal in the detoxification of apoptotic VLCFAs by preventing their accumulation.


Subject(s)
Fatty Acids , Peroxisomes , Cricetinae , Animals , Peroxisomes/metabolism , Fatty Acids/metabolism , CHO Cells , Cricetulus , Oxidation-Reduction
8.
J Med Invest ; 69(3.4): 196-203, 2022.
Article in English | MEDLINE | ID: mdl-36244770

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonias. Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are signaling lipids that evoke growth factor-like responses to many cells. Recent studies revealed the involvement of LPA and S1P in the pathology of IPF. In this study, we determined LPA, S1P and ceramide 1-phosphate (C1P) in peripheral blood plasma of IPF patients, and examined correlation to the vital capacity of lung (VC), an indicator of development of fibrosis. Blood plasma samples were taken from eleven patients with IPF and seven healthy volunteers. The lipids of the sample were extracted and subjected to liquid chromatography-tandem mass spectrometry for analysis. Results showed that there is a significant negative correlation between VC and plasma LPA levels, indicating that IPF patients with advanced fibrosis had higher concentration of LPA in their plasma. Average of S1P levels were significantly higher in IPF patients than those in healthy subjects. Although it is not statistically significant, a similar correlation trend that observed in LPA levels also found between VC and S1P levels. These results indicated that plasma LPA and S1P may be associated with deterioration of pulmonary function of IPF patients. J. Med. Invest. 69 : 196-203, August, 2022.


Subject(s)
Idiopathic Pulmonary Fibrosis , Ceramides , Fibrosis , Humans , Lysophospholipids/analysis , Lysophospholipids/physiology , Sphingosine/analogs & derivatives
9.
FEBS Lett ; 596(23): 3024-3036, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36266963

ABSTRACT

Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.


Subject(s)
Arabidopsis , Brassica , Phospholipase D , Raphanus , Phospholipase D/genetics , Phospholipase D/chemistry , Raphanus/metabolism , Phospholipases/metabolism , Sphingolipids/metabolism , Brassica/genetics , Brassica/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159222, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35988872

ABSTRACT

N-Acyl-phosphatidylethanolamines (NAPEs), a minor class of membrane glycerophospholipids, accumulate along with their bioactive metabolites, N-acylethanolamines (NAEs) during ischemia. NAPEs can be formed through N-acylation of phosphatidylethanolamine by cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) or members of the phospholipase A and acyltransferase (PLAAT) family. However, the enzyme responsible for the NAPE production in brain ischemia has not yet been clarified. Here, we investigated a possible role of cPLA2ε using cPLA2ε-deficient (Pla2g4e-/-) mice. As analyzed with brain homogenates of wild-type mice, the age dependency of Ca2+-dependent NAPE-forming activity showed a bell-shape pattern being the highest at the first week of postnatal life, and the activity was completely abolished in Pla2g4e-/- mice. However, liquid chromatography-tandem mass spectrometry revealed that the NAPE levels of normal brain were similar between wild-type and Pla2g4e-/- mice. In contrast, post-mortal accumulations of NAPEs and most species of NAEs were only observed in decapitated brains of wild-type mice. These results suggested that cPLA2ε is responsible for Ca2+-dependent formation of NAPEs in the brain as well as the accumulation of NAPEs and NAEs during ischemia, while other enzyme(s) appeared to be involved in the maintenance of basal NAPE levels.


Subject(s)
Brain Ischemia , Phosphatidylethanolamines , Acyltransferases/metabolism , Animals , Brain Ischemia/genetics , Disease Models, Animal , Glycerophospholipids , Mice , Phosphatidylethanolamines/metabolism , Phospholipases A , Phospholipases A2, Cytosolic , Spiperone/analogs & derivatives
11.
Article in English | MEDLINE | ID: mdl-34848380

ABSTRACT

Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.


Subject(s)
Peroxisomes
12.
Article in English | MEDLINE | ID: mdl-34033896

ABSTRACT

Bioactive N-acylethanolamines (NAEs) include palmitoylethanolamide, oleoylethanolamide, and anandamide, which exert anti-inflammatory, anorexic, and cannabimimetic actions, respectively. The degradation of NAEs has been attributed to two hydrolases, fatty acid amide hydrolase and NAE acid amidase (NAAA). Acid ceramidase (AC) is a lysosomal enzyme that hydrolyzes ceramide (N-acylsphingosine), which resembles NAAA in structure and function. In the present study, we examined the role of AC in the degradation of NAEs. First, we demonstrated that purified recombinant human AC can hydrolyze various NAEs with lauroylethanolamide (C12:0-NAE) as the most reactive NAE substrate. We then used HEK293 cells metabolically labeled with [14C]ethanolamine, and revealed that overexpressed AC lowered the levels of 14C-labeled NAE. As analyzed with liquid chromatography-tandem mass spectrometry, AC overexpression decreased the amounts of different NAE species. Furthermore, suppression of endogenous AC in LNCaP prostate cells by siRNA increased the levels of various NAEs. Lastly, tissue homogenates from mice genetically lacking saposin D, a presumable activator protein of AC, showed much lower hydrolyzing activity for NAE as well as ceramide than the homogenates from wild-type mice. These results demonstrate the ability of AC to hydrolyze NAEs and suggest its physiological role as a third NAE hydrolase.


Subject(s)
Acid Ceramidase/metabolism , Ethanolamines/metabolism , Animals , HEK293 Cells , Humans , Hydrolysis , Male , Mice
13.
Lipids ; 56(2): 181-188, 2021 03.
Article in English | MEDLINE | ID: mdl-32996178

ABSTRACT

Sphingomyelin (SM) with N-α-hydroxy fatty acyl residues (hSM) has been shown to occur in mammalian skin and digestive epithelia. However, the metabolism and physiological relevance of this characteristic SM species have not been fully elucidated yet. Here, we show methods for mass spectrometric characterization and quantification of hSM. The hSM in mouse skin was isolated by TLC. The hydroxy hexadecanoyl residue was confirmed by electron impact ionization-induced fragmentation in gas chromatography-mass spectrometry. Mass shift analysis of acetylated hSM by time of flight mass spectrometry revealed the number of hydroxyl groups in the molecule. After correcting the difference in detection efficacy, hSM in mouse skin and intestinal mucosa were quantified by liquid chromatography-tandem mass spectrometry, and found to be 16.5 ± 2.0 and 0.8 ± 0.4 nmol/µmol phospholipid, respectively. The methods described here are applicable to biological experiments on hSM in epithelia of the body surface and digestive tract.


Subject(s)
Fatty Acids/analysis , Skin/chemistry , Sphingomyelins/analysis , Animals , Chromatography, Gas , Male , Mass Spectrometry , Mice , Mice, Inbred ICR
14.
Article in English | MEDLINE | ID: mdl-32629025

ABSTRACT

A family of glycerol-based lysolipid mediators comprises lysophosphatidic acid as a representative phospholipidic member but also a monoacylglycerol as a non-phosphorus-containing member. These critical lysolipid mediators are known to be produced from different lysophospholipids by actions of lysophospholipases C and D in mammals. Some members of the glycerophosphodiesterase (GDE) family have attracted recent attention due to their phospholipid-metabolizing activity. In this study, we found selective depletion of lysophosphatidylinositol among lysophospholipids in the culture medium of COS-7 cells transfected with a vector containing glycerophosphodiester phosphodiesterase 2 (GDPD2, GDE3). Thin-layer chromatography and liquid chromatography-tandem mass spectrometry of lipids extracted from GDE3-transfected COS-7 cells exposed to fluorescent analogs of phosphatidylinositol (PI) revealed that GDE3 acted as an ecto-type lysophospholipase C preferring endogenous lysophosphatidylinositol and PI having a long-chain acyl and a short-chain acyl group rather than endogenous PI and its fluorescent analog having two long chain acyl groups. In MC3T3-E1 cells cultured with an osteogenic or mitogenic medium, mRNA expression of GDE3 was increased by culturing in 10% fetal bovine serum for several days, concomitant with increased activity of ecto-lysophospholipase C, converting arachidonoyl-lysophosphatidylinositol, a physiological agonist of G protein-coupled receptor 55, to arachidonoylglycerol, a physiological agonist of cannabinoid receptors 1 and 2. We suggest that GDE3 acts as an ecto-lysophospholipase C, by switching signaling from lysophosphatidylinositol to that from arachidonoylglycerol in an opposite direction in mouse bone remodeling.


Subject(s)
Lysophospholipids/pharmacology , Monoglycerides/metabolism , Phosphoric Diester Hydrolases/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , Cell Line , Chlorocebus aethiops , Mice , Phosphoric Diester Hydrolases/genetics , RNA, Small Interfering/genetics , Transfection
15.
Article in English | MEDLINE | ID: mdl-32615533

ABSTRACT

Glycosylinositol phosphoceramide (GIPC) is a sphingophospholipid in plants. Recently, we identified that GIPC is hydrolyzed to phytoceramide 1-phosphate (PC1P) by an uncharacterized phospholipase D activity following homogenization of certain plant tissues. We now developed methods for isolation of GIPC and PC1P from plant tissues and characterized their chemical stabilities. Hydrophilic solvents, namely a lower layer of a mixed solvent system consisting of isopropanol/hexane/water (55:20:25, v/v/v) was efficient solvent for extraction and eluent in column chromatography. GIPC was isolated by Sephadex column chromatography followed by TLC. A conventional method, such as the Bligh and Dyer method, was applicable for PC1P extraction. Specifically, PC1P was isolated by TLC following mild alkali treatment of lipid extracts of plants. The yields of GIPC and PC1P in our methods were both around 50-70%. We found that PC1P is tolerant against heat (up to 125 °C), strong acid (up to 10 M HCl), and mild alkali (0.1 M KOH). In contrast, significant degradation of GIPC occurred at 100 °C and 1.0 M HCl treatment, suggesting the instability of the inositol glycan moiety in these conditions. These data will be useful for further biochemical and nutritional studies on these sphingolipids.


Subject(s)
Ceramides/isolation & purification , Glycosphingolipids/isolation & purification , Phytochemicals/isolation & purification , Ceramides/analysis , Ceramides/chemistry , Chromatography, Thin Layer , Drug Stability , Glycosphingolipids/analysis , Glycosphingolipids/chemistry , Hydrophobic and Hydrophilic Interactions , Inositol/analogs & derivatives , Inositol/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Polysaccharides/chemistry , Solvents
16.
Prostaglandins Other Lipid Mediat ; 150: 106471, 2020 10.
Article in English | MEDLINE | ID: mdl-32585250

ABSTRACT

The purpose of this study was to clarify whether human amniotic fluid (AF) contains a significant level of bioactive lysophosphatidic acid (LPA) and, whether autotaxin (ATX) is involved in the production of LPA, if present. Using LC-MS/MS, we found a higher ratio of levels of LPA and its precursor lysophosphatidylcholine (LPC) in AF collected after parturition than that in AF collected at the middle stage of pregnancy. We detected significant choline-producing enzymatic activity toward an exogenous LPC in AF at the middle stage of pregnancy, about half of which was ascribable to ATX. In AF collected after parturition, the ATX-independent choline-producing activity of glycerophosphcholine phosphodiesterase coupled to lysophospholipase A activity was increased in relative to the lysophospholipase D activity of ATX. These results suggest that the increased LPA/LPC ratio in AF at the term of pregnancy was due to not only a moderate increase in the level of LPC, but also an unknown mechanism involving epithelial cells bathed with AF.


Subject(s)
Amniotic Fluid/metabolism , Choline/metabolism , Lysophosphatidylcholines/metabolism , Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Female , Humans , Parturition/metabolism , Pregnancy , Pregnancy Trimester, Second
18.
Article in English | MEDLINE | ID: mdl-32179099

ABSTRACT

We previously detected a submicromolar concentration of lysophosphatidic acid (LPA) in human saliva. Here, we compare LPA concentrations in human gingival crevicular fluid (GCF) from patients with periodontitis and healthy controls, and examine how the local LPA levels are regulated enzymatically. The concentrations of LPA and its precursor lysophospholipids in GCF was measured by liquid chromatography-tandem mass spectrometry. The LPA-producing and LPA-degrading enzymatic activities were measured by quantifying the liberated choline and free fatty acid, respectively. The concentration of LPA in GCF of periodontitis patients was lower than that of healthy controls, due to higher soluble lysophospholipase activity toward LPA. LPA was found to prevent survival of Sa3, a human gingival epithelium-derived tumor cell line, activate Sa3 through Ca2+ mobilization, and release interleukin 6 from Sa3 in vitro. Furthermore, local injection of LPA into the gingiva attenuated ligature-induced experimental alveolar bone loss induced by oral bacteria inoculation in a rat model of periodontitis in vivo. A high concentration of LPA in human GCF is necessary to maintain normal gingival epithelial integrity and function, protecting the progression of periodontitis.


Subject(s)
Alveolar Bone Loss/metabolism , Gingival Crevicular Fluid/metabolism , Lysophospholipase/metabolism , Lysophospholipids/metabolism , Periodontitis/metabolism , Adult , Aged , Alveolar Bone Loss/etiology , Alveolar Bone Loss/prevention & control , Animals , Cells, Cultured , Female , Humans , Lysophospholipids/therapeutic use , Male , Middle Aged , Periodontitis/complications , Periodontitis/drug therapy , Rats , Rats, Wistar
19.
Int J Pharm ; 576: 119010, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31901359

ABSTRACT

We previously reported that a weak current (WC, 0.3-0.5 mA/cm2) applied to cells can induce endocytosis to promote cytoplasmic delivery of hydrophilic macromolecules (MW: <70,000), such as dextran and siRNA, which leak from WC-induced endosomes into the cytoplasm (Hasan et al., 2016). In this study, we evaluated the characteristics of WC-mediated endocytosis for application of the technology to cytoplasmic delivery of macromolecular medicines. WC induced significantly higher cellular uptake of exogenous DNA fragments compared to untreated cells; the amount increased in a time-dependent manner, indicating that endocytosis was induced after WC. Moreover, following WC treatment of cells in the presence of an antibody (MW: 150,000) with the lysosomotropic agent chloroquine, the antibody was able to bind to its intracellular target. Thus, high molecular weight protein medicines delivered by WC-mediated endocytosis were functional in the cytoplasm. Transmission electron microscopy of cells treated by WC in the presence of gold nanoparticles covered with polyethylene glycol showed that the WC-induced endosomes exhibited an elliptical shape. In the WC-induced endosomes, ceramide, which makes pore structures in the membrane, was localized. Together, these results suggest that WC can induce unique endocytosis and that macromolecular medicines leak from endosomes through a ceramide pore.


Subject(s)
Antibodies, Monoclonal/metabolism , Cell Membrane/metabolism , DNA/metabolism , Endocytosis , Iontophoresis , Melanoma, Experimental/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Cell Line, Tumor , Ceramides/metabolism , Cytoplasm/metabolism , DNA/administration & dosage , DNA/chemistry , Electric Conductivity , Endosomes/metabolism , Melanoma, Experimental/ultrastructure , Mice , Mice, Inbred BALB C , Molecular Weight , Porosity , Time Factors
20.
J Nutr Sci Vitaminol (Tokyo) ; 65(Supplement): S104-S108, 2019.
Article in English | MEDLINE | ID: mdl-31619606

ABSTRACT

α-Tocopheryl succinate (TS) is a succinic acid ester of a well-known natural antioxidant α-tocopherol (α-T). Physicochemical characteristics of TS are entirely different from the original compound α-T. TS becomes vesicles via forming a lamella structure. Furthermore, although the antioxidative activity of α-T is lacked by esterification of phenolic hydroxyl (OH) moiety with succinate, TS has versatile biological functions, such as inhibition of cholinesterase activity, inhibition of nuclear factor-kappa B (NF-κB) activation, enhancement of lipopolysaccharide-induced nitric oxide production, and anticancer effect. Especially, we expect TS as a novel anticancer agent. TS nanovesicle shows significant anticancer activity in vitro and in vivo. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase produces superoxide which mediates the anticancer activity of TS. Moreover, it suggests that TS activates protein kinase C via direct interaction. Based on the analysis of structure and activity relationship, it ensures that succinate moiety of TS plays a vital role in anticancer activity. This review introduces the detail and mechanism of versatile biological functions of TS.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antioxidants/pharmacokinetics , alpha-Tocopherol/pharmacokinetics , Animals , Cholinesterase Inhibitors/pharmacokinetics , Humans , NF-kappa B/antagonists & inhibitors , Nitric Oxide/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...