Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biol Pharm Bull ; 47(2): 449-453, 2024.
Article in English | MEDLINE | ID: mdl-38369346

ABSTRACT

CsPT4 is an aromatic prenyltransferase that synthesizes cannabigerolic acid (CBGA), the key intermediate of cannabinoid biosynthesis in Cannabis sativa, from olivetolic acid (OA) and geranyl diphosphate (GPP). CsPT4 has a catalytic potential to produce a variety of CBGA analogs via regioselective C-prenylation of aromatic substrates having resorcylic acid skeletons including bibenzyl 2,4-dihydroxy-6-phenylethylbenzoic acid (DPA). In this study, we further investigated the substrate specificity of CsPT4 using phlorocaprophenone (PCP) and 2',4',6'-trihydroxydihydrochalcone (THDC), the isomers of OA and DPA, respectively, and demonstrated that CsPT4 catalyzed both C-prenylation and O-prenylation reactions on PCP and THDC that share acylphloroglucinol substructures. Interestingly, the kinetic parameters of CsPT4 for these substrates differed depending on whether they underwent C-prenylation or O-prenylation, suggesting that this enzyme utilized different substrate-binding modes suitable for the respective reactions. Aromatic prenyltransferases that catalyze O-prenylation are rare in the plant kingdom, and CsPT4 was notable for altering the reaction specificity between C- and O-prenylations depending on the skeletons of aromatic substrates. We also demonstrated that enzymatically synthesized geranylated acylphloroglucinols had potent antiausterity activity against PANC-1 human pancreatic cancer cells, with 4'-O-geranyl THDC being the most effective. We suggest that CsPT4 is a valuable catalyst to generate biologically active C- and O-prenylated molecules that could be anticancer lead compounds.


Subject(s)
Cannabis , Dimethylallyltranstransferase , Humans , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Prenylation , Catalysis , Substrate Specificity
2.
Org Lett ; 25(48): 8601-8605, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38010421

ABSTRACT

Biologically active cannabinoids are derived from cannabigerolic acid (CBGA), which is biosynthesized by aromatic prenyltransferase CsPT4. We exploit the catalytic versatility of CsPT4 to synthesize various CBGA analogues, including a geranylated bibenzyl acid, the precursor to bibenzyl cannabinoids of liverwort origin. The synthesized natural and new-to-nature cannabinoids exhibit potent cytotoxicity in human pancreatic cancer cells. CsPT4 can artificially extend the cannabinoid biosynthetic diversity with novel and improved biological activities.


Subject(s)
Bibenzyls , Cannabinoids , Cannabis , Dimethylallyltranstransferase , Humans
SELECTION OF CITATIONS
SEARCH DETAIL