Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vector Ecol ; 34(1): 22-31, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20836802

ABSTRACT

Human plague risks (Yersinia pestis infection) are greatest when epizootics cause high mortality among this bacterium's natural rodent hosts. Therefore, health departments in plague-endemic areas commonly establish animal-based surveillance programs to monitor Y. pestis infection among plague hosts and vectors. The primary objectives of our study were to determine whether passive animal-based plague surveillance samples collected in Colorado from 1991 to 2005 were sampled from high human plague risk areas and whether these samples provided information useful for predicting human plague case locations. By comparing locations of plague-positive animal samples with a previously constructed GIS-based plague risk model, we determined that the majority of plague-positive Gunnison's prairie dogs (100%) and non-prairie dog sciurids (85.82%), and moderately high percentages of sigmodontine rodents (71.4%), domestic cats (69.3%), coyotes (62.9%), and domestic dogs (62.5%) were recovered within 1 km of the nearest area posing high peridomestic risk to humans. In contrast, the majority of white-tailed prairie dog (66.7%), leporid (cottontailed and jack rabbits) (71.4%), and black-tailed prairie dog (93.0%) samples originated more than 1 km from the nearest human risk habitat. Plague-positive animals or their fleas were rarely (one of 19 cases) collected within 2 km of a case exposure site during the 24 months preceding the dates of illness onset for these cases. Low spatial accuracy for identifying epizootic activity prior to human plague cases suggested that other mammalian species or their fleas are likely more important sources of human infection in high plague risk areas. To address this issue, epidemiological observations and multi-locus variable number tandem repeat analyses (MLVA) were used to preliminarily identify chipmunks as an under-sampled, but potentially important, species for human plague risk in Colorado.


Subject(s)
Plague/epidemiology , Sciuridae/microbiology , Animals , Cats , Colorado , Coyotes/microbiology , Disease Vectors , Dogs , Geographic Information Systems , Humans , Lagomorpha/microbiology , Plague/prevention & control , Plague/transmission , Risk Assessment , Sentinel Surveillance , Sigmodontinae/microbiology , Siphonaptera/microbiology , Yersinia pestis/isolation & purification
2.
J Med Entomol ; 44(3): 530-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17547242

ABSTRACT

Plague is a rare but highly virulent flea-borne zoonotic disease caused by the Gram-negative bacterium Yersinia pestis Yersin. Identifying areas at high risk of human exposure to the etiological agent of plague could provide a useful tool for targeting limited public health resources and reduce the likelihood of misdiagnosis by raising awareness of the disease. We created logistic regression models to identify landscape features associated with areas where humans have acquired plague from 1957 to 2004 in the four-corners region of the United States (Arizona, Colorado, New Mexico, and Utah), and we extrapolated those models within a geographical information system to predict where plague cases are likely to occur within the southwestern United States disease focus. The probability of an area being classified as high-risk plague habitat increased with elevation up to approximately 2300 m and declined as elevation increased thereafter, and declined with distance from key habitat types (e.g., southern Rocky Mountain piñon--juniper [Pinus edulis Engelm. and Juniperus spp.], Colorado plateau piñon--juniper woodland, Rocky Mountain ponderosa pine (Pinus ponderosa P.& C. Lawson var. scopulorum), and southern Rocky Mountain juniper woodland and savanna). The overall accuracy of the model was >82%. Our most conservative model predicted that 14.4% of the four-corners region represented a high risk of peridomestic exposure to Y. pestis.


Subject(s)
Models, Statistical , Plague/epidemiology , Yersinia pestis/physiology , Animals , Ecosystem , Geography , Humans , Risk Factors , Rodentia/microbiology , Siphonaptera/microbiology , Southwestern United States/epidemiology
3.
J Med Entomol ; 40(5): 718-22, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14596288

ABSTRACT

Burrows within black-tailed prairie dog (Cynomys ludovicianus) colonies on the Rocky Mountain Arsenal National Wildlife Refuge, Colorado, were dusted with deltamethrin insecticide to reduce flea (Insecta: Siphonaptera) abundance. Flea populations were monitored pre- and posttreatment by combing prairie dogs and collecting fleas from burrows. A single application of deltamethrin significantly reduced populations of the plague vector Oropsylla hirsuta, and other flea species on prairie dogs and in prairie dog burrows for at least 84 d. A plague epizootic on the Rocky Mountain Arsenal National Wildlife Refuge caused high mortality of prairie dogs on some untreated colonies, but did not appear to affect nearby colonies dusted with deltamethrin.


Subject(s)
Plague/prevention & control , Pyrethrins/toxicity , Sciuridae/parasitology , Siphonaptera/growth & development , Animals , Colorado , Housing, Animal , Humans , Nitriles , Pest Control/methods , Population Density , Siphonaptera/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...