Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 95(7): e28965, 2023 07.
Article in English | MEDLINE | ID: mdl-37488710

ABSTRACT

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus. Here, we employed the genetic code expansion and engineered IFN-ß, a phase II clinical cytokine with 3-amino tyrosine (IFN-ß-A) that reactivates STAT2 expression in virus-infected human cells through JAK/STAT cell signaling without affecting signal activation and serum half-life. This study identified that genetically encoded IFN-ß-A might stabilize the protein-receptor complex and trigger JAK-STAT cell signaling, which is a promising modality for controlling SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cell Membrane , Cytokines , Disease Progression
2.
Virus Res ; 323: 199010, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36417940

ABSTRACT

Comorbidities such as diabetes worsen COVID-19 severity and recovery. Metformin, a first-line medication for type 2 diabetes, has antiviral properties and certain studies have also indicated its prognostic potential in COVID-19. Here, we report that metformin significantly inhibits SARS-CoV-2 growth in cell culture models. First, a steady increase in AMPK phosphorylation was detected as infection progressed, suggesting its important role during viral infection. Activation of AMPK in Calu3 and Caco2 cell lines using metformin revealed that metformin suppresses SARS-CoV-2 infectious titers up to 99%, in both naïve as well as infected cells. IC50 values from dose-variation studies in infected cells were found to be 0.4 and 1.43 mM in Calu3 and Caco2 cells, respectively. Role of AMPK in metformin's antiviral suppression was further confirmed using other pharmacological compounds, AICAR and Compound C. Collectively, our study demonstrates that metformin is effective in limiting the replication of SARS-CoV-2 in cell culture and thus possibly could offer double benefits as diabetic COVID-19 patients by lowering both blood glucose levels and viral load.

3.
Microbiol Spectr ; 10(5): e0160422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36073824

ABSTRACT

The Delta variant of SARS-CoV-2 has caused more severe infections than its previous variants. We studied the host innate immune response to Delta, Alpha, and two earlier variants to map the evolution of the recent ones. Our biochemical and transcriptomic studies in human colon epithelial cell line Caco2 reveal that Alpha and Delta have progressively evolved over the ancestral variants by silencing the innate immune response, thereby limiting cytokine and chemokine production. Though Alpha silenced the retinoic acid-inducible gene (RIG)-I-like receptor (RLR) pathway just like Delta did, it failed to persistently silence the innate immune response, unlike Delta. Both Alpha and Delta have evolved to resist interferon (IFN) treatment, while they are still susceptible to RLR activation, further highlighting the importance of RLR-mediated, IFN-independent mechanisms in restricting SARS-CoV-2. Our studies reveal that SARS-CoV-2 Delta has integrated multiple mechanisms to silence the host innate immune response and evade the IFN response. We speculate that Delta's silent replication and sustained suppression of the host innate immune response, thereby resulting in delayed or reduced intervention by the adaptive immune response, could have potentially contributed to the severe symptoms and poor recovery index associated with it. It is likely that this altered association with the host would play an important role in the coevolution of SARS-CoV-2 with humans. IMPORTANCE Viruses generally learn to coexist with the host during the process of evolution. It is expected that SARS-CoV-2 would also evolve to coexist in humans by trading off its virulence for longer persistence, causing milder disease. Clinically, the fatality associated with COVID-19 has been declining due to vaccination and preinfections, but the Delta variant caused the most severe disease and fatality across several parts of the world. Our study identified an evolving trend of SARS-CoV-2 variants where the variants that emerged during early parts of the pandemic caused a more robust innate immune response, while the later emerging variant Delta showed features of suppression of the response. The features that Delta has acquired could have strongly influenced the distinct pathophysiology associated with its infection. How these changed associations with the host influence the long-term evolution of the virus and the disease outcome should be closely studied to understand the process of viral evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Interferons/genetics , Caco-2 Cells , Immunity, Innate , Antiviral Agents , Epithelial Cells , Cytokines , Chemokines , Colon , Tretinoin
4.
J Aerosol Sci ; 164: 106002, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35495416

ABSTRACT

To understand the transmission characteristics of severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) through air, samples from different locations occupied by coronavirus disease (COVID-19) patients were analyzed. Three sampling strategies were used to understand the presence of virus in the air in different environmental conditions. In the first strategy, which involved hospital settings, air samples were collected from several areas of hospitals like COVID-intensive-care units (ICUs), nurse-stations, COVID-wards, corridors, non-COVID-wards, personal protective equipment (PPE) doffing areas, COVID rooms, out-patient (OP) corridors, mortuary, COVID casualty areas, non-COVID ICUs and doctors' rooms. Out of the 80 air samples collected from 6 hospitals from two Indian cities- Hyderabad and Mohali, 30 samples showed the presence of SARS-CoV-2 nucleic acids. In the second sampling strategy, that involved indoor settings, one or more COVID-19 patients were asked to spend a short duration of time in a closed room. Out of 17 samples, 5 samples, including 4 samples collected after the departure of three symptomatic patients from the room, showed the presence of SARS-CoV-2 nucleic acids. In the third strategy, involving indoor settings, air samples were collected from rooms of houses of home-quarantined COVID-19 patients and it was observed that SARS-CoV-2 RNA could be detected in the air in the rooms occupied by COVID-19 patients but not in the other rooms of the houses. Taken together, we observed that the air around COVID-19 patients frequently showed the presence of SARS-CoV-2 RNA in both hospital and indoor residential settings and the positivity rate was higher when 2 or more COVID-19 patients occupied the room. In hospitals, SARS-CoV-2 RNA could be detected in ICUs as well as in non-ICUs, suggesting that the viral shedding happened irrespective of the severity of the infection. This study provides evidence for the viability of SARS-CoV-2 and its long-range transport through the air. Thus, airborne transmission could be a major mode of transmission for SARS-CoV-2 and appropriate precautions need to be followed to prevent the spread of infection through the air.

5.
Clin Immunol ; 237: 108981, 2022 04.
Article in English | MEDLINE | ID: mdl-35306171

ABSTRACT

Neutralizing antibody-based passive immunotherapy could be an important therapeutic option against COVID-19. Herein, we demonstrate that equines hyper-immunized with chemically inactivated SARS-CoV-2 elicited high antibody titers with a strong virus-neutralizing potential, and F(ab')2 fragments purified from them displayed strong neutralization potential against five different SARS-CoV-2 variants. F(ab')2 fragments purified from the plasma of hyperimmunized horses showed high antigen-specific affinity. Experiments in rabbits suggested that the F(ab')2 displays a linear pharmacokinetics with approximate plasma half-life of 47 h. In vitro microneutralization assays using the purified F(ab')2 displayed high neutralization titers against five different variants of SARS-CoV-2 including the Delta variant, demonstrating its potential efficacy against the emerging viral variants. In conclusion, this study demonstrates that F(ab')2 generated against SARS-CoV-2 in equines have high neutralization titers and have broad target-range against the evolving variants, making passive immunotherapy a potential regimen against the existing and evolving SARS-CoV-2 variants in combating COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Horses , Humans , Immunoglobulin Fab Fragments , Immunoglobulin Fragments , Rabbits
6.
Virus Res ; 305: 198555, 2021 11.
Article in English | MEDLINE | ID: mdl-34487766

ABSTRACT

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/chemistry , Propiolactone/pharmacology , SARS-CoV-2/drug effects , Virion/drug effects , Virus Inactivation/drug effects , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Flocculation/drug effects , Humans , Immune Sera/chemistry , RNA, Viral/chemistry , RNA, Viral/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Vaccines, Inactivated , Vero Cells , Virion/chemistry , Virion/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...