Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Epidemiol ; 4: 1279835, 2024.
Article in English | MEDLINE | ID: mdl-38456076

ABSTRACT

Introduction: Antimalarial drugs including artemisinin-based combination therapy (ACT) regimens and sulphadoxine-pyrimethamine (SP) are used in Ghana for malaria therapeutics and prophylaxis respectively. The genetic basis of Plasmodium falciparum development of drug resistance involves single nucleotide polymorphisms in genes encoding proteins for multiple cellular and metabolic processes. The prevalence of single nucleotide polymorphisms in nine P. falciparum genes linked to ACT and SP resistance in the malaria parasite population was determined. Methods: Archived filter paper blood blot samples from patients aged 9 years and below with uncomplicated malaria reporting at 10 sentinel sites located in three ecological zones for the Malaria Therapeutic Efficacy Studies were used. The samples used were collected from 2007-2018 malaria transmission seasons and mutations in the genes were detected using PCR and Sanger sequencing. Results: In all 1,142 samples were used for the study. For falcipain-2 gene (pffp2), Sanger sequencing was successful for 872 samples and were further analysed. The prevalence of the mutants was 45% (392/872) with pffp2 markers V51I and S59F occurring in 15.0% (128/872) and 3.0% (26/872) of the samples respectively. Prevalence of other P. falciparum gene mutations: coronin (pfcoronin) was 44.8% (37/90); cysteine desulfurase (pfnfs) was 73.9% (68/92); apicoplast ribosomal protein S10 (pfarps10) was 36.8% (35/95); ferredoxin (pffd) was 8.8% (8/91); multidrug resistance protein-1 (pfmrp1) was 95.2.0% (80/84); multidrug resistance protein-2 (pfmrp2) was 91.4% (32/35); dihydrofolate reductase (pfdhfr) was 99.0% (84/85); dihydropteroate synthase (pfdhps) was 72% (68/95). Discussion: The observation of numerous mutations in these genes of interest in the Ghanaian isolates, some of which have been implicated in delayed parasite clearance is of great interest. The presence of these genotypes may account for the decline in the efficacies of ACT regimens being used to treat uncomplicated malaria in the country. The need for continuous monitoring of these genetic markers to give first-hand information on parasite susceptibility to antimalarial drugs to inform policy makers and stakeholders in malaria elimination in the country is further discussed.

4.
Sci Rep ; 12(1): 7797, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551239

ABSTRACT

The molecular determinants of Plasmodium falciparum artemisinin resistance are the single nucleotide polymorphisms in the parasite's kelch propeller domain, pfk13. Validated and candidate markers are under surveillance in malaria endemic countries using artemisinin-based combination therapy. However, pfk13 mutations which may confer parasite artemisinin resistance in Africa remains elusive. It has therefore become imperative to report all observed pfk13 gene polymorphisms in malaria therapeutic efficacy studies for functional characterization. We herein report all novel pfk13 mutations observed only in the Ghanaian parasite population. In all, 977 archived samples from children aged 12 years and below with uncomplicated malaria from 2007 to 2017 were used. PCR/Sanger sequencing analysis revealed 78% (763/977) of the samples analyzed were wild type (WT) for pfk13 gene. Of the 214 (22%) mutants, 78 were novel mutations observed only in Ghana. The novel SNPs include R404G, P413H, N458D/H/I, C473W/S, R529I, M579T/Y, C580R/V, D584L, N585H/I, Q661G/L. Some of the mutations were sites and ecological zones specific. There was low nucleotide diversity and purifying selection at the pfk13 locus in Ghanaian parasite population. With increasing drug pressure and its consequent parasite resistance, documenting these mutations as baseline data is crucial for future molecular surveillance of P. falciparum resistance to artemisinin in Ghana.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Child , Drug Resistance/genetics , Ghana/epidemiology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Protozoan Proteins/pharmacology
5.
Front Epidemiol ; 2: 1011938, 2022.
Article in English | MEDLINE | ID: mdl-38455301

ABSTRACT

Rapid diagnostic tests (RDTs) are used to diagnose malaria in Ghana and other malaria endemic countries. Plasmodium falciparum histidine-rich protein 2 (PFHRP2) based RDTs are widely used, however the occurrence of deletions of the pfhrp2 gene in some parasites have resulted in false negative test results. Monoclonal antibodies of PFHRP2 cross reacts with PFHRP3 because they share structural similarities and this complements the detection of the parasites by RDT. These two genes were investigated in Ghanaian P. falciparum parasite population to detect deletions and the polymorphisms in exon 2 of the pfhrp2 and pfhrp3 genes. Parasite isolates (2,540) from children ≤ 12 years with uncomplicated malaria from 2015 to 2020 transmission seasons were used. Both genes were amplified using nested PCR and negative results indicated the presence of the deletion of genes. Amplified genes were sequenced for the detection of the amino acid repeats. Deletions were observed in 30.7% (780/2,540) and 17.2% (438/2,540) of the samples for pfhrp2 and pfhrp3 respectively with increasing trends over the three time periods (χ2 -10.305, p = 0.001). A total of 1,632 amplicons were sequenced for each gene, analysis was done on 1,124 and 1,307 good quality sequences for pfhrp2 and pfhrp3 respectively. Pfhrp2 repeat polymorphisms were dominantly of types 2 (AHHAHHAAD) and 7 (AHHAAD) with large numbers of variants. A novel variant of type 14 (AHHANHATD) was seen for pfhrp2. For the pfhrp3 repeat types, 16 (AHHAAN), 17 (AHHDG) and 18 (AHHDD) were the dominant types observed. Variants of type 16 (AHHAAH) and (AHHASH) were also dominant. Repeat types 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 15, 16, and 19 were observed be shared by both genes. The haplotype diversity of both genes ranged between 0.872 and 1 indicating high diversity of the polymorphisms in the isolates. The implication of the findings of the frequencies of the pfhrp2 and pfhrp3 deletions as well as the variants of the main epitopes of the monoclonal antibodies for the RDT (types 2 and 7) in our isolates is an indication of decreased sensitivity of the RDTs in diagnosing malaria infections in Ghana.

SELECTION OF CITATIONS
SEARCH DETAIL
...