Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Photosynth Res ; 159(2-3): 261-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38032488

ABSTRACT

In photosynthetic bacteria, the absorbed light drives the canonical cyclic electron transfer between the reaction center and the cytochrome bc1 complexes via the pools of mobile electron carriers. If kinetic or structural barriers hinder the participation of the bc1 complex in the cyclic flow of electrons, then the pools of mobile redox agents must supply the electrons for the multiple turnovers of the reaction center. These conditions were achieved by continuous high light excitation of intact cells of bacterial strains Rba. sphaeroides and Rvx. gelatinosus with depleted donor side cytochromes c2 (cycA) and tetraheme cytochrome subunit (pufC), respectively. The gradual oxidation by ferricyanide further reduced the availability of electron donors to pufC. Electron transfer through the reaction center was tracked by absorption change and by induction and relaxation of the fluorescence of the bacteriochlorophyll dimer. The rate constants of the electron transfer (~ 3 × 103 s‒1) from the mobile donors of Rvx. gelatinosus bound either to the RC (pufC) or to the tetraheme subunit (wild type) were similar. The electrons transferred through the reaction center dimer were supplied entirely by the donor pool; their number amounted to about 5 in wild type Rvx. gelatinosus and decreased to 1 in pufC oxidized by ferricyanide. Fluorescence yield was measured as a function of the oxidized fraction of the dimer and its complex shape reveals the contribution of two competing processes: the migration of the excitation energy among the photosynthetic units and the availability of electron donors to the oxidized dimer. The experimental results were simulated and rationalized by a simple kinetic model of the two-electron cycling of the acceptor side combined with aperiodic one-electron redox function of the donor side.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Rhodobacter sphaeroides , Humans , Electrons , Photosynthetic Reaction Center Complex Proteins/metabolism , Cytochromes/metabolism , Oxidation-Reduction , Electron Transport , Cytochromes c/metabolism , Proteobacteria/metabolism , Ferricyanides , Tissue Donors , Kinetics , Rhodobacter sphaeroides/metabolism
2.
Proc Natl Acad Sci U S A ; 99(10): 6702-6, 2002 May 14.
Article in English | MEDLINE | ID: mdl-11983861

ABSTRACT

Photosynthetic bacterial reaction centers convert light excitation into chemical free energy. The initial electron transfer leads to the consecutive semireductions of the primary (Q(A)) and secondary (Q(B)) quinone acceptors. The Q(A)(-) and Q(B)(-) formations induce proton uptake from the bulk. Their magnitudes (H(+)/Q(A)(-) and H(+)/Q(B)(-), respectively) probe the electrostatic interactions within the complex. The pH dependence of H(+)/Q(A)(-) and H(+)/Q(B)(-) were studied in five single mutants modified at the L209 site (L209P-->F,Y,W,E,T). This residue is situated at the border of a continuous chain of water molecules connecting Q(B) to the bulk. In the wild type (WT), a proton uptake band is present at high pH in the H(+)/Q(A)(-) and H(+)/Q(B)(-) curves and is commonly attributed to a cluster of acidic groups situated nearby Q(B). In the H(+)/Q(A)(-) curves of the L209 variants, this band is systematically absent but remains in the H(+)/Q(B)(-) curves. Moreover, notable increase of H(+)/Q(B)(-) is observed in the L209 mutants at neutral pH as compared with the WT. The large effects observed in all L209 mutants are not associated with significant structural changes (Kuglstatter, A., Ermler, U., Michel, H., Baciou, L. & Fritzsch, G. Biochemistry (2001) 40, 4253-4260). Our data suggest that, in the L209 mutants, the Q(B) cluster does not respond to the Q(A)(-) formation as observed in the WT. We propose that, in the mutants, removal of the rigid proline L209 breaks a necessary hydrogen bonding connection between the quinone sites. These findings suggest an important role for structural rigidity in ensuring a functional interaction between quinone binding sites.


Subject(s)
Benzoquinones/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Proline/physiology , Rhodobacter sphaeroides/metabolism , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/genetics , Proline/genetics , Proline/metabolism , Protons , Rhodobacter sphaeroides/genetics
3.
J Biol Chem ; 276(49): 45513-5, 2001 Dec 07.
Article in English | MEDLINE | ID: mdl-11604387

ABSTRACT

In reaction center proteins of photosynthetic bacteria, the amplitude of proton uptake induced by the one-electron reduction of either of the two quinone electron acceptors (Q(A) and Q(B)) is an intrinsic observable of the electrostatic interactions associated with the redox function of the complex. We report here that, in Rhodobacter capsulatus, complete restoration of proton uptake (upon formation of Q(A)(-) and Q(B)(-)) to the level found in the wild type is observed in a mutant reaction center in which a tyrosine substitution in the Q(A) environment (Ala(M274) --> Tyr) is coupled with mutations of acidic residues near Q(B) (Glu(L212) --> Ala/Asp(L213) --> Ala) that initially cancel the proton uptake above pH 8. This result demonstrates that proton uptake occurs by strong cooperation between structural motifs, such as hydrogen-bonded networks, that span the 18 A distance between the two quinone acceptors.


Subject(s)
Hydrogen Bonding , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter capsulatus/chemistry , Mutagenesis , Photosynthetic Reaction Center Complex Proteins/genetics
4.
Photosynth Res ; 70(2): 175-84, 2001.
Article in English | MEDLINE | ID: mdl-16228351

ABSTRACT

Inhibition of electron transport and damage to the protein subunits by visible light has been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides. Illumination by 1100 muEm(-2) s(-1) light induced only a slight effect in wild type, carotenoid containing 2.4.1. reaction centers. In contrast, illumination of reaction centers isolated from the carotenoidless R26 strain resulted in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm arising from the P(+)Q(B) (-) --> PQ(B) recombination. In addition to this effect, the L, M and H protein subunits of the R26 reaction center were damaged as shown by their loss on Coomassie stained gels, which was however not accompanied by specific degradation products. Both the loss of photochemical activity and of protein subunits were suppressed in the absence of oxygen. By applying EPR spin trapping with 2,2,6,6-tetramethylpiperidine we could detect light-induced generation of singlet oxygen in the R26, but not in the 2.4.1. reaction centers. Moreover, artificial generation of singlet oxygen, also led to the loss of the L, M and H subunits. Our results provide evidence for the common hypothesis that strong illumination by visible light damages the carotenoidless reaction center via formation of singlet oxygen. This mechanism most likely proceeds through the interaction of the triplet state of reaction center chlorophyll with the ground state triplet oxygen in a similar way as occurs in Photosystem II.

5.
Biochemistry ; 38(40): 13179-87, 1999 Oct 05.
Article in English | MEDLINE | ID: mdl-10529190

ABSTRACT

The X-ray crystallographic structure of the photosynthetic reaction center from Rhodobacter sphaeroides obtained at high resolution has revealed a number of internal water molecules (Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure 2, 925-936; Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816). Some of them are organized into distinct hydrogen-bonded water chains that connect Q(B) (the terminal quinone electron acceptor of the reaction center) to the aqueous phase. To investigate the role of the water chains in the proton conduction process, proline L209, located immediately adjacent to a water chain, was mutated to the following residues: F, Y, W, E, and T. We have first analyzed the effects of the mutations on the kinetic and thermodynamic properties of the rate constants of the second electron transfer (k(AB)(2)) and of the coupled proton uptake (k(H)+) at the second flash. In all aromatic mutants, k(AB)(2) and k(H)+ are notably and concomitantly decreased compared to the wild-type, while no effect is observed in the other mutants. The temperature dependence of these rates shows activation energy values (DeltaH) similar for the proton and electron-transfer processes in the wild-type and in most of the mutants, except for the L209PW and L209PF mutants. The analysis of the enthalpy factors related to the electron and proton-transfer processes in the L209PF and the L209PW mutants allows to distinguish the respective effects of the mutations for both transfer reactions. It is noteworthy that in the aromatic mutants a substantial increase of the free energies of activation is observed (DeltaG(L209PY) < DeltaG(L209PF) < DeltaG(L209PW)) for both proton and electron-transfer reactions, while in the other mutants, DeltaG is not affected. The salt concentration dependence of k(AB)(2) shows, in the L209PF and L209PW mutants, a higher screening of the protein surface potential experienced by Q(B). Our data suggest that residues F and W in position L209 increase the polarizability of the internal water molecules and polar residues by altering the organization of the hydrogen-bond network. We have also analyzed the rates of the first electron-transfer reaction (k(AB)(1)), in the 100 micros time domain. These kinetics have previously been shown to reflect protein relaxation events possibly including proton uptake events (Tiede, D. M., Vazquez, J., Cordova, J., and Marone, P. M. (1996) Biochemistry 35, 10763-10775). Interestingly, in the L209PF and L209PW mutants, k(AB)(1) is notably decreased in comparison to the wild type and the other mutants, in a similar way as k(AB)(2) and k(H)+. Our data imply that the dynamic organization of this web is tightly coupled to the electron transfer process that is kinetically limited by protonation events and/or conformational rearrangements within the protein.


Subject(s)
Ion Channels/genetics , Photosynthetic Reaction Center Complex Proteins/genetics , Proline/genetics , Proton-Motive Force/genetics , Rhodobacter sphaeroides/genetics , Water/metabolism , Amino Acid Substitution/genetics , Electron Transport , Ion Channels/metabolism , Kinetics , Mutagenesis, Site-Directed , Mutation , Photolysis , Photosynthetic Reaction Center Complex Proteins/metabolism , Recombination, Genetic , Rhodobacter sphaeroides/metabolism , Sodium Chloride/metabolism , Temperature , Ubiquinone/metabolism
6.
Biochemistry ; 35(48): 15411-7, 1996 Dec 03.
Article in English | MEDLINE | ID: mdl-8952493

ABSTRACT

In the reaction centers from the purple photosynthetic bacterium Rhodobacter capsulatus, we have determined that residue L212Glu, situated near the secondary quinone acceptor QB, modulates the free energy level of the reduced primary quinone molecule QA- at high pH. Even though the distance between L212Glu and QA is 17 A, our results indicate an apparent interaction energy between them of 30 +/- 18 meV. This interaction was measured by quantitating the stoichiometry of partial proton uptake upon formation of QA- as a function of pH in four mutant strains which lack L212Glu, in comparison with the wild type. These strains are the photosynthetically incompetent site-specific mutants L212Glu -->Gln and L212Glu-L213Asp-->Ala-Ala and the photocompetent strains L212Glu-->Ala and L212Ala-L213Ala-M43Asn-->Ala-Ala-Asp. Below pH 7.5, the stoichiometry of proton uptake from all strains is nearly superimposable with that of the wild type. However, at variance with the wild type, reaction centers from all strains that lack L212Glu fail to take up protons above pH 9. The lack of a change in the free energy level of QA- at high pH in the L212Glu-modified strains is confirmed by the determination of the pH dependence of the rate (kAP) of P+QA- charge recombination in the reaction centers where the native QA is replaced by quinones having low redox potentials. Contrary to the wild-type reaction centers where kAP increases at high pH, almost no pH dependence could be detected in the strains that lack L212Glu. Our data show that the ionization state of L212Glu, either on its own or via interactions with closely associated ionizable groups, is mainly involved in the proton uptake at high pH by reaction centers in the PQA- state. This suggests that the formation of the QA- semiquinone state induces shifts in pKas of residues in the QB proteic environment. This long-distance influence of ionization states is a mechanism which would facilitate electron transfer from QA to QB on the first and second flashes. The functional communication between the two quinone protein pockets may involve the iron-ligand complex which spans the distance between them.


Subject(s)
Benzoquinones , Photosynthetic Reaction Center Complex Proteins/chemistry , Hydrogen-Ion Concentration , Rhodobacter capsulatus , Static Electricity
7.
Photosynth Res ; 50(2): 171-9, 1996 Nov.
Article in English | MEDLINE | ID: mdl-24271934

ABSTRACT

Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280-320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P(+)(QAQB)(-) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB (-)) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB (-) to QA (-)QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.

8.
Photosynth Res ; 45(2): 135-46, 1995 Aug.
Article in English | MEDLINE | ID: mdl-24301480

ABSTRACT

A spontaneous mutant (R/89) of photosynthetic purple bacterium Rhodobacter sphaeroides R-26 was selected for resistance to 200 µM atrazin. It showed increased resistance to interquinone electron transfer inhibitors of o-phenanthroline (resistance factor, RF=20) in UQo reconstituted isolated reaction centers and terbutryne in reaction centers (RF=55) and in chromatophores (RF=85). The amino acid sequence of the QB binding protein of the photosynthetic reaction center (the L subunit) was determined by sequencing the corresponding pufL gene and a single mutation was found (Ile(L229) → Met). The changed amino acid of the mutant strain is in van der Waals contact with the secondary quinone QB. The binding and redox properties of QB in the mutant were characterized by kinetic (charge recombination) and multiple turnover (cytochrome oxidation and semiquinone oscillation) assays of the reaction center. The free energy for stabilization of QAQB (-) with respect to QA (-)QB was ΔGAB=-60 meV and 0 meV in reaction centers and ΔGAB=-85 meV and -46 meV in chromatophores of R-26 and R/89 strains at pH 8, respectively. The dissociation constants of the quinone UQo and semiquinone UQo (-) in reaction centers from R-26 and R/89 showed significant and different pH dependence. The observed changes in binding and redox properties of quinones are interpreted in terms of differential effects (electrostatics and mesomerism) of mutation on the oxidized and reduced states of QB.

SELECTION OF CITATIONS
SEARCH DETAIL
...