Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 139(8): 1160-1176, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35201323

ABSTRACT

Anti-CD38 monoclonal antibodies (mAbs) represent a breakthrough in the treatment of multiple myeloma (MM), yet some patients fail to respond or progress quickly with this therapy, highlighting the need for novel approaches. In this study we compared the preclinical efficacy of SAR442085, a next-generation anti-CD38 mAb with enhanced affinity for activating Fcγ receptors (FcγR), with first-generation anti-CD38 mAb daratumumab and isatuximab. In surface plasmon resonance and cellular binding assays, we found that SAR442085 had higher binding affinity than daratumumab and isatuximab for FcγRIIa (CD32a) and FcγRIIIa (CD16a). SAR442085 also exhibited better in vitro antibody-dependent cellular cytotoxicity (ADCC) against a panel of MM cells expressing variable CD38 receptor densities including MM patients' primary plasma cells. The enhanced ADCC of SAR442085 was confirmed using NK-92 cells bearing low and high affinity FcγRIIIa (CD16a)-158F/V variants. Using MM patients' primary bone marrow cells, we confirmed that SAR442085 had an increased ability to engage FcγRIIIa, resulting in higher natural killer (NK) cell activation and degranulation against primary plasma cells than preexisting Fc wild-type anti-CD38 mAbs. Finally, using huFcgR transgenic mice that express human Fcγ receptors under the control of their human regulatory elements, we demonstrated that SAR442085 had higher NK cell-dependent in vivo antitumor efficacy and better survival than daratumumab and isatuximab against EL4 thymoma or VK*MYC myeloma cells overexpressing human CD38. These results highlight the preclinical efficacy of SAR442085 and support the current evaluation of this next-generation anti-CD38 antibody in phase I clinical development in patients with relapsed/refractory MM.


Subject(s)
ADP-ribosyl Cyclase 1/antagonists & inhibitors , Antineoplastic Agents, Immunological/pharmacology , Bone Marrow Cells , Membrane Glycoproteins/antagonists & inhibitors , Multiple Myeloma , Neoplasm Proteins/antagonists & inhibitors , ADP-ribosyl Cyclase 1/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Line, Tumor , HEK293 Cells , Humans , Membrane Glycoproteins/metabolism , Mice, Transgenic , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Neoplasm Proteins/metabolism , Xenograft Model Antitumor Assays
2.
Oncoimmunology ; 9(1): 1758606, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32923117

ABSTRACT

Antitumor immunity is mediated by Th1 CD4+ and CD8+ T lymphocytes, which induce tumor-specific cytolysis, whereas Th17 CD4+ T cells have been described to promote tumor growth. Here, we explored the influence of IL-17 on the ability of therapeutic vaccines to induce the rejection of tumors in mice using several adjuvants known to elicit either Th1 or Th17-type immunity. Immunization of mice with Th1-adjuvanted vaccine induced high levels of IFN-γ-producing T cells, whereas injection with Th17-promoting adjuvants triggered the stimulation of both IL-17 and IFN-γ-producing T cells. However, despite their capacity to induce strong Th1 responses, these Th17-promoting adjuvants failed to induce the eradication of tumors. In addition, the systemic administration of IL-17A strongly decreases the therapeutic effect of Th1-adjuvanted vaccines in two different tumor models. This suppressive effect correlated with the capacity of systemically delivered IL-17A to inhibit the induction of CD8+ T-cell responses. The suppressive effect of IL-17A on the induction of CD8+ T-cell responses was abolished in mice depleted of neutrophils, clearly demonstrating the role played by these cells in the inhibitory effect of IL-17A in the induction of antitumor responses. These results demonstrate that even though strong Th1-type responses favor tumor control, the simultaneous activation of Th17 cells may redirect or curtail tumor-specific immunity through a mechanism involving neutrophils. This study establishes that IL-17 plays a detrimental role in the development of an effective antitumor T cell response and thus could strongly affect the efficiency of immunotherapy through the inhibition of CTL responses.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer Vaccines , Interleukin-17 , Neoplasms , Adjuvants, Immunologic , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/pharmacology , Female , Interleukin-17/pharmacology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Th1 Cells/immunology
3.
Oncoimmunology ; 7(3): e1404213, 2018.
Article in English | MEDLINE | ID: mdl-29399403

ABSTRACT

Regulatory T-cells (Tregs) are crucial for the maintenance of immune tolerance and homeostasis as well as for preventing autoimmune diseases, but their impact on the survival of cancer patients remains controversial. In the TC-1 mouse model of human papillomavirus (HPV)-related carcinoma, we have previously demonstrated that the therapeutic efficacy of the CyaA-E7-vaccine, targeting the HPV-E7 antigen, progressively declines with tumor growth, in correlation with increased intratumoral recruitment of Tregs. In the present study, we demonstrated that these TC-1 tumor-infiltrating Tregs were highly activated, with increased expression of immunosuppressive molecules. Both intratumoral effector CD4+ T-cells (Teffs) and Tregs expressed high levels of PD-1, but anti-PD-1 antibody treatment did not impact the growth of the TC-1 tumor nor restore the therapeutic effect of the CyaA-E7 vaccine. To analyze the mechanisms by which Tregs are recruited to the tumor site, we used MHC-II KO mice with drastically reduced numbers of CD4+ effector T-cells. We demonstrated that these mice still had significant numbers of Tregs in their lymphoid organs which were recruited to the tumor. In MHC-II KO mice, the growth of the TC-1 tumor was delayed in correlation with a strong increase in the intratumoral recruitment of CD8+ T-cells. In addition, in mice that spontaneously rejected their tumors, the infiltration of E7-specific CD8+ T-cells was significantly higher than in MHC-II KO mice with a growing tumor. These results demonstrate that tumor-specific CD8+ T-cells can be efficiently activated and recruited in the absence of MHC class II molecules and of CD4+ T-cell help.

4.
Ann Biol Clin (Paris) ; 75(5): 576-579, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28958969

ABSTRACT

Nocardia spp. est responsable d'infections opportunistes chez les patients immunodéprimés, principalement d'infections pulmonaires. Le système nerveux central est la localisation extra-pulmonaire la plus souvent retrouvée. Nous rapportons ici un cas d'infection cutanée à N. brasiliensis chez une patiente immunocompétente, ainsi qu'une revue de la littérature.


Subject(s)
Immunocompetence , Nocardia Infections/diagnosis , Skin Diseases, Bacterial/diagnosis , Aged, 80 and over , Female , Humans , Nocardia Infections/immunology , Skin Diseases, Bacterial/immunology
5.
Int J Cancer ; 139(6): 1358-71, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27130719

ABSTRACT

Enhancing anti-tumor immunity and preventing tumor escape are efficient strategies to increase the efficacy of therapeutic cancer vaccines. However, the treatment of advanced tumors remains difficult, mainly due to the immunosuppressive tumor microenvironment. Regulatory T cells and myeloid-derived suppressor cells have been extensively studied, and their role in suppressing tumor immunity is now well established. In contrast, the role of B lymphocytes in tumor immunity remains unclear because B cells can promote tumor immunity or display regulatory functions to control excessive inflammation, mainly through IL-10 secretion. Here, in a mouse model of HPV-related cancer, we demonstrate that B cells accumulated in the draining lymph node of tumor-bearing mice, due to a prolonged survival, and showed a decreased expression of MHC class II and CD86 molecules and an increased expression of Ly6A/E, PD-L1 and CD39, suggesting potential immunoregulatory properties. However, B cells from tumor-bearing mice did not show an increased ability to secrete IL-10 and a deficiency in IL-10 production did not impair tumor growth. In contrast, in B cell-deficient µMT mice, tumor rejection occurred due to a strong T cell-dependent anti-tumor response. Genetic analysis based on single nucleotide polymorphisms identified genetic variants associated with tumor rejection in µMT mice, which could potentially affect reactive oxygen species production and NK cell activity. Our results demonstrate that B cells play a detrimental role in anti-tumor immunity and suggest that targeting B cells could enhance the anti-tumor response and improve the efficacy of therapeutic cancer vaccines.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Papillomavirus Infections/complications , Uterine Cervical Neoplasms/etiology , Uterine Cervical Neoplasms/metabolism , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology , B-Lymphocytes/pathology , Cell Movement/immunology , Disease Models, Animal , Disease Progression , Female , Genome-Wide Association Study , Interleukin-10/biosynthesis , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocyte Activation , Mice , Papillomaviridae , Papillomavirus Infections/virology , Phenotype , Polymorphism, Single Nucleotide , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Toll-Like Receptor 9/metabolism , Uterine Cervical Neoplasms/pathology
6.
Cancer Res ; 75(16): 3279-91, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26122844

ABSTRACT

The metabolic sensor mTOR broadly regulates cell growth and division in cancer cells, leading to a significant focus on studies of rapamycin and its analogues as candidate anticancer drugs. However, mTOR inhibitors have failed to produce useful clinical efficacy, potentially because mTOR is also critical in T cells implicated in immunosurveillance. Indeed, recent studies using rapamycin have demonstrated the important role of mTOR in differentiation and induction of the CD8+ memory in T-cell responses associated with antitumor properties. In this study, we demonstrate that rapamycin harms antitumor immune responses mediated by T cells in the setting of cancer vaccine therapy. Specifically, we analyzed how rapamycin affects the antitumor efficacy of a human papilloma virus E7 peptide vaccine (CyaA-E7) capable of eradicating tumors in the TC-1 mouse model of cervical cancer. In animals vaccinated with CyaA-E7, rapamycin administration completely abolished recruitment of CD8+ T cells into TC-1 tumors along with the ability of the vaccine to reduce infiltration of T regulatory cells and myeloid-derived suppressor cells. Moreover, rapamycin completely abolished vaccine-induced cytotoxic T-cell responses and therapeutic activity. Taken together, our results demonstrate the powerful effects of mTOR inhibition in abolishing T-cell-mediated antitumor immune responses essential for the therapeutic efficacy of cancer vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Neoplasms/immunology , Sirolimus/immunology , Animals , Antibiotics, Antineoplastic/immunology , Antibiotics, Antineoplastic/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/administration & dosage , Cell Line, Tumor , Disease Models, Animal , Female , Flow Cytometry , Humans , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/metabolism , Neoplasms/prevention & control , Papillomavirus E7 Proteins/immunology , Sirolimus/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism , Tumor Burden/drug effects , Tumor Burden/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...