Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1470: 213-24, 2016.
Article in English | MEDLINE | ID: mdl-27581296

ABSTRACT

High-throughput screening with a loss-of-function strategy is a logical and efficient way to identify novel genes involved in biological processes of interest. In zebrafish, morpholinos have been developed as a convenient tool to knock down gene expression. Here, we describe procedures for systematic screening using morpholinos in zebrafish to identify novel deubiquitylases involved in convergent extension during gastrulation. In this example, we examine candidates based on embryonic morphology and molecular signals of whole mount in situ hybridization assay.


Subject(s)
Gene Expression Regulation, Developmental , High-Throughput Screening Assays/methods , In Situ Hybridization/methods , Morpholinos/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , Embryo, Nonmammalian , Gastrulation/genetics , Gene Knockdown Techniques/methods , Microinjections/methods , Morpholinos/pharmacology , Ubiquitin-Specific Proteases/genetics , Zebrafish Proteins/genetics
2.
Zebrafish ; 13 Suppl 1: S24-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27267235

ABSTRACT

In the past three decades, the number of zebrafish laboratories has significantly increased in Taiwan. The Taiwan Zebrafish Core Facility (TZCF), a government-funded core facility, was launched to serve this growing community. The Core Facility was built on two sites, one located at the National Health Research Institutes (NHRI, called Taiwan Zebrafish Core Facility at NHRI or TZeNH) and the other is located at the Academia Sinica (Taiwan Zebrafish Core Facility at AS a.k.a. TZCAS). The total surface area of the TZCF is about 180 m(2) encompassing 2880 fish tanks. Each site has a separate quarantine room and centralized water recirculating systems, monitoring key water parameters. To prevent diseases, three main strategies have been implemented: (1) imported fish must be quarantined; (2) only bleached embryos are introduced into the main facilities; and (3) working practices were implemented to minimize pathogen transfer between stocks and facilities. Currently, there is no health program in place; however, a fourth measure for the health program, specific regular pathogen tests, is being planned. In March 2015, the TZCF at NHRI has been AAALAC accredited. It is our goal to ensure that we provide "disease-free" fish and embryos to the Taiwanese research community.


Subject(s)
Animal Husbandry/methods , Animals, Laboratory , Aquaculture/methods , Zebrafish , Animal Husbandry/instrumentation , Animal Husbandry/organization & administration , Animals , Aquaculture/instrumentation , Aquaculture/organization & administration , Models, Animal , Taiwan
3.
Biochim Biophys Acta ; 1839(6): 425-37, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24768923

ABSTRACT

AGR2 is a member of the protein disulfide isomerase (PDI) family, which is implicated in cancer cell growth and metastasis, asthma, and inflammatory bowel disease. Despite the contributions of this protein to several biological processes, the regulatory mechanisms controlling expression of the AGR2 gene in different organs remain unclear. Zebrafish anterior gradient 2 (agr2) is expressed in several organs, including the otic vesicles that contain mucus-secreting cells. To elucidate the regulatory mechanisms controlling agr2 expression in otic vesicles, we generated a Tg(-6.0 k agr2:EGFP) transgenic fish line that expressed EGFP in a pattern recapitulating that of agr2. Double immunofluorescence studies were used to demonstrate that Agr2 and GFP colocalize in the semicircular canals and supporting cells of all sensory patches in the otic vesicles of Tg(-6.0 k agr2:EGFP) embryos. Transient/stable transgenic analyses coupled with 5'-end deletion revealed that a 100 bp sequence within the -2.6 to -2.5 kbp region upstream of agr2 directs EGFP expression specifically in the otic vesicles. Two HMG-binding motifs were detected in this region. Mutation of these motifs prevented EGFP expression. Furthermore, EGFP expression in the otic vesicles was prevented by knockdown of the sox10 gene. This corresponded with decreased agr2 expression in the otic vesicles of sox10 morphants during different developmental stages. Electrophoretic mobility shift assays were used to show that Sox10 binds to HMG-binding motifs located within the -2.6 to -2.5 kbp region upstream of agr2. These results demonstrate that agr2 expression in the otic vesicles of zebrafish embryos is regulated by Sox10.


Subject(s)
Ear/physiology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , SOXE Transcription Factors/metabolism , Semicircular Canals/metabolism , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Electrophoretic Mobility Shift Assay , Embryo, Nonmammalian/cytology , Fluorescent Antibody Technique , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Situ Hybridization , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SOXE Transcription Factors/genetics , Semicircular Canals/cytology , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...