Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 584: 647-659, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33198979

ABSTRACT

HYPOTHESIS: Multistage silicate self-organization into light-weight, high-strength, hierarchically patterned diatom frustules carries hints for innovative silica-based nanomaterials. With sodium silicate in a biomimetic sol-gel system templated by a tri-surfactant system of hexadecyltrimethylammonium bromide, sodium dodecylsulfate, and poly(oxyethylene-b-oxypropylene-b-oxyethylene) (P123), mesoporous silica nanochannel plates with perpendicular channel orientation are synthesized. The formation process, analogous to that of diatom frustules, is postulated to be directed by an oriented self-assembly of the block copolymer micelles shelled with charged catanionic surfactants upon silication. EXPERIMENTS: The postulated formation process for the oriented silica nanochannel plates was investigated using time-resolved small-angle X-ray and neutron scattering (SAXS/SANS) and freeze fracture replication transmission electron microscopy (FFR-TEM). FINDINGS: With fine-tuned molar ratios of the anionic, cationic, and nonionic surfactants, the catanionic combination and the nonionic copolymer form charged, prolate ternary micelles in aqueous solutions, which further develop into prototype monolayered micellar plates. The prolate shape and maximized surfactant adsorption of the complex micelles, revealed from combined SAXS/SANS analysis, are of critical importance in the subsequent micellar self-assembly upon silicate deposition. Time-resolved SAXS and FFR-TEM indicate that the silicate complex micelles coalesce laterally into the prototype micellar nanoplates, which further fuse with one another into large sheets of monolayered silicate micelles of in-plane lamellar packing. Upon silica polymerization, the in-plane lamellar packing of the micelles further transforms to 2D hexagonal packing of vertically oriented silicate channels. The unveiled structural features and their evolution not only elucidate the previously unresolved self-assembly process of through-thickness silica nanochannels but also open a new line of research mimicking free-standing frustules of diatoms.

2.
Microsc Res Tech ; 75(2): 103-11, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21761491

ABSTRACT

A pre-cryogenic holder (cryo-holder) facilitating cryo-specimen observation under a conventional scanning electron microscope (SEM) is described. This cryo-holder includes a specimen-holding unit (the stub) and a cryogenic energy-storing unit (a composite of three cylinders assembled with a screw). After cooling, the cryo-holder can continue supplying cryogenic energy to extend the observation time for the specimen in a conventional SEM. Moreover, the cryogenic energy-storing unit could retain appropriate liquid nitrogen that can evaporate to prevent frost deposition on the surface of the specimen. This device is proved feasible for various tissues and cells, and can be applied to the fields of both biology and material science. We have employed this novel cryo-holder for observation of yeast cells, trichome, and epidermal cells in the leaf of Arabidopsis thaliana, compound eyes of insects, red blood cells, filiform papillae on the surface of rat tongue, agar medium, water molecules, penicillium, etc. All results suggested that the newly designed cryo-holder is applicable for cryo-specimen observation under a conventional SEM without cooling system. Most importantly, the design of this cryo-holder is simple and easy to operate and could adapt a conventional SEM to a plain type cryo-SEM affordable for most laboratories.


Subject(s)
Cryoelectron Microscopy/instrumentation , Cryopreservation/instrumentation , Tissue Fixation/instrumentation , Aedes/anatomy & histology , Animals , Arabidopsis/anatomy & histology , Cold Temperature , Compound Eye, Arthropod/ultrastructure , Cryoelectron Microscopy/methods , Cryopreservation/methods , Cryoprotective Agents/chemistry , Erythrocytes/ultrastructure , Plant Epidermis/ultrastructure , Plant Leaves/anatomy & histology , Rats , Time Factors , Tissue Fixation/methods , Yeasts/ultrastructure
3.
J Colloid Interface Sci ; 362(2): 354-66, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21807371

ABSTRACT

Free-standing thin sheet form of mesoporous silica materials with perpendicular orientation is a much desired materials for its possible applications in catalysis, mask, and separation. A three component amphiphile system of sodium dodecyl sulfate/hexadecyltrimethylammonium bromide/pluronic-123(C(16)TMAB/SDS/P123) was employed to template the condensation of sodium silicates for the formation of SBA(⊥), a thin sheet of SBA-15 with perpendicular nanochannels. SBA(⊥) can be synthesized at SDS/C(16)TMAB=1.5 and T≥40°C and shows pH-dependent morphology. It has uniform pore size ∼9 nm, homogeneous sheet thickness in the range of 60-300 nm and dimension of several microns. We studied in details the structure and morphology of the SBA(⊥) with variation of three experimental parameters: the SDS/C(16)TMAB ratio, the temperature, and the pH condition in the synthetic gel. It is proposed that the mixed surfactants of SDS and C(16)TMAB form catanionic vesicle in which the P123 and silicates are condensed. The balanced interaction of P123/silicate with the narrow confinement under surfactant bi-layers of C(16)TMAB/SDS promoted the formation of perpendicular nanochannels. Low temperature and pH conditions favor stronger segregation of the PPO and PEO-oligosilicate segments in the SBA(⊥) structure which gives the basis of thickness control of the sheet. The control of structure and morphology are discussed with modern theory of microphase separation in block copolymers under confinement.

4.
Nanotechnology ; 20(40): 405207, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19738298

ABSTRACT

A polymer solar cell based on poly(3-hexylthiophene) (P3HT)/iron disulfide (FeS2) nanocrystal (NC) hybrid is presented. The FeS2 NCs of 10 nm in diameter were homogeneously blended with P3HT to form an active layer of a solar cell. An extended red light harvesting up to 900 nm resulting from the NCs in the device has been demonstrated, compared to a typical absorption edge of 650 nm of a pristine P3HT. The environmentally friendly and low-cost FeS2 NCs can be used as a promising candidate for an acceptor in the polymer solar cell device application with an enhanced photovoltaic response in the extended red light region.


Subject(s)
Electric Power Supplies , Iron/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Solar Energy , Sulfides/chemistry , Thiophenes/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , X-Ray Diffraction
5.
Langmuir ; 23(8): 4115-9, 2007 Apr 10.
Article in English | MEDLINE | ID: mdl-17367180

ABSTRACT

Mesoporous silica helical fibers in many different shapes have been synthesized in a highly dilute silicate solution at pH approximately 2.0 by using CnTMAB-SDS-P123 (n = 14-18) ternary surfactant as a template. The mesoporous silica helical fibers possess a well-ordered hexagonal mesostructure, high surface area, and large pore volume. Thus, the microtome sections of the helical fibers demonstrate a concentric mesotructure or two hemiconcentric mesostructures. In addition to triblock copolymer, adding the proper amount of 1-butanol or pentanol can promote the yield of the helical fibers as well. The yield of the surfactant-templated helical fibers is also dependent on the water content, reaction temperature, and pH value of the solution. The mesoporous silica helical fiber can be used as a solid template to prepare mesoporous carbon helical fibers via impregnation of phenol-formaldehyde, pyrolysis, and silica removal.


Subject(s)
Biomimetics , Chemistry, Physical/methods , Silicon Dioxide/chemistry , Surface-Active Agents/chemistry , 1-Butanol/chemistry , Anions , Cations , Formaldehyde/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phenol/chemistry , Surface Properties , Temperature , X-Ray Diffraction
6.
Langmuir ; 22(1): 6-9, 2006 Jan 03.
Article in English | MEDLINE | ID: mdl-16378389

ABSTRACT

Hollow silica spheres with mesostructured shells (HSSMS) were prepared with a vesicle template of cetyltrimethylammonium bromide-sodium dodecyl sulfate-Pluronic P123 (C(16)TMAB-SDS-EO(20)PO(70)EO(20)) at a SDS/C(16)TMAB ratio of 0.6-0.8 following a fast silicification in dilute silicate solution at pH approximately 5.0. The mesostructure of the shell is disordered, and the mesopore size is about 5.5-7.5 nm. Moreover, the direction and length of the nanochannels of the shell change with the SDS/C(16)TMAB ratios. A bi-template model, in which the C(16)TMA(+)-DS(-) form the stable bilayer vesicle structure and the P123 copolymers anchored on C(16)TMA(+)-DS(-) vesicle act as the template for the mesoporous silica, was proposed to explain the formation of the HSSMS. This bi-template model can be applied extensively to prepare the HSSMS with different diameters and pore sizes by using other C(n)TMAX-SDS-EO(n)PO(m))EO(n) ternary-surfactant mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL