Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3233, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622140

ABSTRACT

Electrochemical hydrogenation of acetonitrile based on well-developed proton exchange membrane electrolyzers holds great promise for practical production of ethylamine. However, the local acidic condition of proton exchange membrane results in severe competitive proton reduction reaction and poor selection toward acetonitrile hydrogenation. Herein, we conduct a systematic study to screen various metallic catalysts and discover Pd/C exhibits a 43.8% ethylamine Faradaic efficiency at the current density of 200 mA cm-2 with a specific production rate of 2912.5 mmol g-1 h-1, which is about an order of magnitude higher than the other screened metal catalysts. Operando characterizations indicate the in-situ formed PdHx is the active centers for catalytic reaction and the adsorption strength of the *MeCH2NH2 intermediate dictates the catalytic selectivity. More importantly, the theoretical analysis reveals a classic d-band mediated volcano curve to describe the relation between the electronic structures of catalysts and activity, which could provide valuable insights for designing more effective catalysts for electrochemical hydrogenation reactions and beyond.

2.
Nat Commun ; 15(1): 1614, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388525

ABSTRACT

While Ru owns superior catalytic activity toward hydrogen oxidation reaction and cost advantages, the catalyst deactivation under high anodic potential range severely limits its potential to replace the Pt benchmark catalyst. Unveiling the deactivation mechanism of Ru and correspondingly developing protection strategies remain a great challenge. Herein, we develop atomic Pt-functioned Ru nanoparticles with excellent anti-deactivation feature and meanwhile employ advanced operando characterization tools to probe the underlying roles of Pt in the anti-deactivation. Our studies reveal the introduced Pt single atoms effectively prevent Ru from oxidative passivation and consequently preserve the interfacial water network for the critical H* oxidative release during catalysis. Clearly understanding the deactivation nature of Ru and Pt-induced anti-deactivation under atomic levels could provide valuable insights for rationally designing stable Ru-based catalysts for hydrogen oxidation reaction and beyond.

3.
Virol Sin ; 39(2): 251-263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219860

ABSTRACT

Viral encephalitis continues to be a significant public health concern. In our previous study, we discovered a lower expression of antiviral factors, such as IFN-ß, STING and IFI16, in the brain tissues of patients with Rasmussen's encephalitis (RE), a rare chronic neurological disorder often occurred in children, characterized by unihemispheric brain atrophy. Furthermore, a higher cumulative viral score of human herpes viruses (HHVs) was also found to have a significant positive correlation with the unihemispheric atrophy in RE. Type I IFNs (IFN-I) signaling is essential for innate anti-infection response by binding to IFN-α/ß receptor (IFNAR). In this study, we infected WT mice and IFNAR-deficient A6 mice with herpes simplex virus 1 (HSV-1) via periocular injection to investigate the relationship between IFN-I signaling and HHVs-induced brain lesions. While all mice exhibited typical viral encephalitis lesions in their brains, HSV-induced epilepsy was only observed in A6 mice. The gene expression matrix, functional enrichment analysis and protein-protein interaction network revealed four gene models that were positively related with HSV-induced epilepsy. Additionally, ten key genes with the highest scores were identified. Taken together, these findings indicate that intact IFN-I signaling can effectively limit HHVs induced neural symptoms and brain lesions, thereby confirming the positive correlation between IFN-I signaling repression and brain atrophy in RE and other HHVs encephalitis.


Subject(s)
Brain , Epilepsy , Herpesvirus 1, Human , Interferon Type I , Signal Transduction , Animals , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Mice , Brain/pathology , Brain/virology , Epilepsy/virology , Epilepsy/pathology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency , Disease Models, Animal , Mice, Knockout , Mice, Inbred C57BL , Female , Protein Interaction Maps , Herpes Simplex/virology , Herpes Simplex/pathology , Herpes Simplex/immunology , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/immunology , Encephalitis, Herpes Simplex/pathology , Humans
4.
Small ; : e2310036, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126916

ABSTRACT

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.

5.
ACS Nano ; 17(18): 17779-17789, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37708057

ABSTRACT

The development of high-performance platinum (Pt)-based electrocatalysts for the hydrogen oxidation reaction (HOR) is highly desirable for hydrogen fuel cells, but it is limited by the sluggish kinetics and severe carbon monoxide (CO) poisoning in alkaline medium. Herein, we explore a class of facet-selected Pt-nickel-indium fishbone-like nanowires (PtNiIn FNWs) featuring high-index facets (HIFs) of Pt3In skin as efficient alkaline HOR catalysts. Impressively, the optimized Pt66Ni6In28 FNWs show the highest mass and specific activities of 4.02 A mgPt-1 and 6.56 mA cm-2, 2.0/2.1 and 13.9/15.6 times larger than those of commercial PtRu/C and commercial Pt/C, respectively, along with a competitive CO-tolerance ability. Specifically, they exhibit only 6.0% current density decay after 10000 s of operation and 25.7% activity loss after 2000 s in the presence of 1000 ppm of CO. Moreover, an isotope experiment and density functional theory (DFT) calculations further prove that the unique structure and synergy among Pt, Ni, and In endow these Pt66Ni6In28 FNWs with an optimized hydrogen binding energy (HBE) and an advantageous hydroxide binding energy (OHBE), giving them excellent alkaline HOR properties. The combined construction of surface-skin and HIFs in PtNiIn FNWs will offer an available method to realize the potential applications of advanced non-PtRu-based catalysts in fuel cells and beyond.

6.
Neuropathol Appl Neurobiol ; 49(4): e12926, 2023 08.
Article in English | MEDLINE | ID: mdl-37483117

ABSTRACT

AIMS: Mesial temporal lobe epilepsy without hippocampal sclerosis (no-HS MTLE) refers to those MTLE patients who have neither magnetic resonance imaging (MRI) lesions nor definite pathological evidence of hippocampal sclerosis. They usually have resistance to antiepileptic drugs, difficulties in precise seizure location and poor surgical outcomes. Adenosine is a neuroprotective neuromodulator that acts as a seizure terminator in the brain. The role of adenosine in no-HS MTLE is still unclear. Further research to explore the aetiology and pathogenesis of no-HS MTLE may help to find new therapeutic targets. METHODS: In surgically resected hippocampal specimens, we examined the maladaptive changes of the adenosine system of patients with no-HS MTLE. In order to better understand the dysregulation of the adenosine pathway in no-HS MTLE, we developed a rat model based on the induction of focal cortical lesions through a prenatal freeze injury. RESULTS: We first examined the adenosine system in no-HS MTLE patients who lack hippocampal neuronal loss and found ectopic expression of the astrocytic adenosine metabolising enzyme adenosine kinase (ADK) in hippocampal pyramidal neurons, as well as downregulation of neuronal A1 receptors (A1 Rs) in the hippocampus. In the no-HS MTLE model rats, the transition of ADK from neuronal expression to an adult pattern of glial expression in the hippocampus was significantly delayed. CONCLUSIONS: Ectopic expression of neuronal ADK might be a pathological hallmark of no-HS MTLE. Maladaptive changes in adenosine metabolism might be a novel target for therapeutic intervention in no-HS MTLE.


Subject(s)
Epilepsy, Temporal Lobe , Hippocampal Sclerosis , Animals , Rats , Epilepsy, Temporal Lobe/pathology , Adenosine Kinase/metabolism , Ectopic Gene Expression , Seizures/pathology , Magnetic Resonance Imaging , Hippocampus/pathology , Biomarkers/metabolism , Sclerosis/pathology
7.
Nat Commun ; 14(1): 3847, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386000

ABSTRACT

Copper is well-known to be selective to primary amines via electrocatalytic nitriles hydrogenation. However, the correlation between the local fine structure and catalytic selectivity is still illusive. Herein, we find that residual lattice oxygen in oxide-derived Cu nanowires (OD-Cu NWs) plays vital roles in boosting the acetonitrile electroreduction efficiency. Especially at high current densities of more than 1.0 A cm-2, OD-Cu NWs exhibit relatively high Faradic efficiency. Meanwhile, a series of advanced in situ characterizations and theoretical calculations uncover that oxygen residues, in the form of Cu4-O configuration, act as electron acceptors to confine the free electron flow on the Cu surface, consequently improving the kinetics of nitriles hydrogenation catalysis. This work could provide new opportunities to further improve the hydrogenation performance of nitriles and beyond, by employing lattice oxygen-mediated electron tuning engineering.


Subject(s)
Copper , Electrons , Hydrogenation , Acetonitriles , Nitriles , Catalysis , Oxides , Oxygen
8.
Mol Neurobiol ; 60(8): 4396-4417, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37103687

ABSTRACT

Focal cortical dysplasia (FCD), a common malformation of cortical development, is frequently associated with pharmacoresistant epilepsy in both children and adults. Adenosine is an inhibitory modulator of brain activity and a prospective anti-seizure agent with potential for clinical translation. Our previous results demonstrated that the major adenosine-metabolizing enzyme adenosine kinase (ADK) was upregulated in balloon cells (BCs) within FCD type IIB lesions, suggesting that dysfunction of the adenosine system is implicated in the pathophysiology of FCD. In our current study, we therefore performed a comprehensive analysis of adenosine signaling in surgically resected cortical specimens from patients with FCD type I and type II via immunohistochemistry and immunoblot analysis. Adenosine enzyme signaling was assessed by quantifying the levels of the key enzymes of adenosine metabolism, i.e., ADK, adenosine deaminase (ADA), and ecto-5'-nucleotidase (CD73). Adenosine receptor signaling was assessed by quantifying the levels of adenosine A2A receptor (A2AR) and putative downstream mediators of adenosine, namely, glutamate transporter-1 (GLT-1) and mammalian target of rapamycin (mTOR). Within lesions in FCD specimens, we found that the adenosine-metabolizing enzymes ADK and ADA, as well as the adenosine-producing enzyme CD73, were upregulated. We also observed an increase in A2AR density, as well as a decrease in GLT-1 levels and an increase in mTOR levels, in FCD specimens compared with control tissue. These results suggest that dysregulation of the adenosine system is a common pathologic feature of both FCD type I and type II. The adenosine system might therefore be a therapeutic target for the treatment of epilepsy associated with FCD.


Subject(s)
Epilepsy , Focal Cortical Dysplasia , Malformations of Cortical Development, Group I , Malformations of Cortical Development , Child , Adult , Humans , Epilepsy/pathology , Malformations of Cortical Development, Group I/metabolism , Malformations of Cortical Development, Group I/pathology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
9.
CNS Neurosci Ther ; 29(9): 2597-2607, 2023 09.
Article in English | MEDLINE | ID: mdl-37017409

ABSTRACT

AIMS: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus, is an effective therapy for patients with drug-resistant epilepsy, yet, its mechanism of action remains elusive. Adenosine kinase (ADK), a key negative regulator of adenosine, is a potential modulator of epileptogenesis. DBS has been shown to increase adenosine levels, which may suppress seizures via A1 receptors (A1 Rs). We investigated whether DBS could halt disease progression and the potential involvement of adenosine mechanisms. METHODS: Control group, SE (status epilepticus) group, SE-DBS group, and SE-sham-DBS group were included in this study. One week after a pilocarpine-induced status epilepticus, rats in the SE-DBS group were treated with DBS for 4 weeks. The rats were monitored by video-EEG. ADK and A1 Rs were tested with histochemistry and western blot, respectively. RESULTS: Compared with the SE group and SE-sham-DBS group, DBS could reduce the frequency of spontaneous recurrent seizures (SRS) and the number of interictal epileptic discharges. The DPCPX, an A1 R antagonist, reversed the effect of DBS on interictal epileptic discharges. In addition, DBS inhibited the overexpression of ADK and the downregulation of A1 Rs. CONCLUSION: The findings indicate that DBS can reduce SRS in epileptic rats via inhibition of ADK and activation of A1 Rs. A1 Rs might be a potential target of DBS for the treatment of epilepsy.


Subject(s)
Adenosine Kinase , Epilepsy , Receptor, Adenosine A1 , Seizures , Status Epilepticus , Animals , Rats , Receptor, Adenosine A1/metabolism , Adenosine Kinase/metabolism , Epilepsy/chemically induced , Epilepsy/therapy , Seizures/chemically induced , Seizures/therapy , Status Epilepticus/chemically induced , Status Epilepticus/therapy , Pilocarpine , Male , Rats, Sprague-Dawley , Disease Progression
10.
J Neurosci Res ; 101(6): 916-929, 2023 06.
Article in English | MEDLINE | ID: mdl-36696411

ABSTRACT

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) appears to be effective against seizures in animals and humans however, its therapeutic mechanisms remain elusive. This study aimed to combine 9.4T multimodal magnetic resonance imaging (MRI) with histology to investigate the longitudinal effects of long-term ANT-DBS in pilocarpine-induced epileptic rats. Status epilepsy (SE) was induced by LiCl-pilocarpine injection in 11 adult male Sprague-Dawley rats. Four weeks after SE, chronic epileptic rats underwent either ANT-DBS (n = 6) or sham-DBS (n = 5) surgery. Electroencephalography (EEG) and spontaneous recurrent seizures (SRS) were recorded for 1 week. The T2-weighted image and images from resting-state functional MRI (rs-fMRI) were acquired at three states: before SE, at 4 weeks post-SE, and at 5 weeks post-DBS. Volumes of the hippocampal subregions and hippocampal-related functional connectivity (FC) were compared longitudinally. Finally, antibodies against neuronal nuclei (NeuN) and glial fibrillary acidic proteins were used to evaluate neuronal loss and astrogliosis in the hippocampus. Long-term ANT-DBS significantly reduced seizure generalization in pilocarpine-induced epileptic rats. By analyzing the gray matter volume using T2-weighted images, long-term ANT-DBS displayed morphometric restoration of the hippocampal subregions. Neuronal protection of the hippocampal subregions and inhibition of astrogliosis in the hippocampal subregions were observed in the ANT-DBS group. ANT-DBS caused reversible regulation of FC in the insula-hippocampus and subthalamic nucleus-hippocampus. Long-term ANT-DBS provides comprehensive protection of hippocampal histology, hippocampal morphometrics, and hippocampal-related functional networks.


Subject(s)
Deep Brain Stimulation , Epilepsy , Humans , Adult , Rats , Male , Animals , Pilocarpine/toxicity , Pilocarpine/metabolism , Gliosis/chemically induced , Gliosis/diagnostic imaging , Gliosis/metabolism , Rats, Sprague-Dawley , Deep Brain Stimulation/methods , Epilepsy/chemically induced , Epilepsy/diagnostic imaging , Epilepsy/therapy , Seizures/metabolism , Magnetic Resonance Imaging , Hippocampus/metabolism
11.
Ther Adv Neurol Disord ; 15: 17562864221144351, 2022.
Article in English | MEDLINE | ID: mdl-36578694

ABSTRACT

Background: Epilepsy is one of the important long-term sequelae of neonatal hypoxic-ischemic encephalopathy (HIE) and is typically characterized by drug resistance and poor surgical outcomes. Vagus nerve stimulation (VNS) is a promising neuromodulation therapy for refractory epilepsy. Objectives: The present study aimed to first evaluate the effectiveness of VNS in patients with refractory HIE-induced epilepsy and scrutinize potential clinical predictors. Methods: We retrospectively collected the outcomes of VNS in all patients with refractory HIE-induced epilepsy and at least 2 years of follow-up. Subgroups were classified as responders and nonresponders according to the effectiveness of VNS (⩾50% or <50% reduction in seizure frequency). Preoperative data were analyzed to screen for potential predictors of VNS effectiveness. Results: A total of 55 patients with refractory HIE-induced epilepsy who underwent VNS therapy were enrolled. Responders represented 56.4% of patients, and 12.7% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time with rates of 23.6%, 38.2%, 50.9%, and 56.4% at the 3-, 6-, 12- and 24-month follow-ups, respectively. After multivariate analysis, neonatal seizure was identified as a negative predictor (OR: 4.640, 95% CI: 1.129-19.066), and a predominant seizure type of generalized onset was identified as a positive predictor (OR: 0.261, 95% CI: 0.078-0.873) of VNS effectiveness. Conclusion: VNS therapy was effective in patients with refractory HIE-induced epilepsy and was well tolerated over a 2-year follow-up period. VNS therapy demonstrated better effectiveness in patients without neonatal seizures or with a predominant seizure type of generalized onset.

12.
ASN Neuro ; 14: 17590914221136662, 2022.
Article in English | MEDLINE | ID: mdl-36383501

ABSTRACT

Depression is a common psychiatric comorbidity in patients with epilepsy, especially those with temporal lobe epilepsy (TLE). The aim of this study was to assess changes in high mobility group box protein 1 (HMGB1) expression in epileptic patients with and without comorbid depression. Sixty patients with drug-resistant TLE who underwent anterior temporal lobectomy were enrolled. Anterior hippocampal samples were collected after surgery and analyzed by immunofluorescence (n = 7/group). We also evaluated the expression of HMGB1 in TLE patients with hippocampal sclerosis and measured the level of plasma HMGB1 by enzyme-linked immunosorbent assay. The results showed that 28.3% of the patients (17/60) had comorbid depression. HMGB1 was ubiquitously expressed in all subregions of the anterior hippocampus. The ratio of HMGB1-immunoreactive neurons and astrocytes was significantly increased in both TLE patients with hippocampal sclerosis and TLE patients with comorbid depression compared to patients with TLE only. The ratio of cytoplasmic to nuclear HMGB1-positive neurons in the hippocampus was higher in depressed patients with TLE than in nondepressed patients, which suggested that more HMGB1 translocated from the nucleus to the cytoplasm in the depressed group. There was no significant difference in the plasma level of HMGB1 among patients with TLE alone, TLE with hippocampal sclerosis, and TLE with comorbid depression. The results of the study revealed that the translocation of HMGB1 from the nucleus to the cytoplasm in hippocampal neurons may play a previously unrecognized role in the initiation and amplification of epilepsy and comorbid depression. The direct targeting of neural HMGB1 is a promising approach for anti-inflammatory therapy.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , HMGB1 Protein , Humans , Sclerosis/metabolism , Sclerosis/pathology , HMGB1 Protein/metabolism , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Epilepsy/surgery , Epilepsy/metabolism , Gliosis/pathology , Cytoplasm/metabolism
13.
Acta Neurol Scand ; 146(6): 761-766, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36189924

ABSTRACT

Rasmussen's encephalitis (RE) is a rare condition of unknown etiology that causes a severe chronically neurological disorder with mostly affecting children. The main clinical feature of RE includes frequent seizures with drug-resistant, unilateral hemispheric atrophy, and progressive neurological deficits. In this review, we summarized five pathogenesis on the basis of the current research including virus infection, antibody-mediated degeneration, cell-mediated immunity, microglia-induced degeneration, and genetic mutations. So far, no exact virus in RE brain tissue or definite antigen in humoral immune system was confirmed as the determined etiology. The importance of cytotoxic CD8+ T lymphocytes and activated microglial and the role of their immune mechanism in RE development are gradually emerging with the deep study. Genetic researches support the notion that the pathogenesis of RE is probably associated with single nucleotide polymorphisms on immune-related genes, which is driven by affecting inherent antiretroviral innate immunity. Recent advances in treatment suggest immunotherapy could partially slows down the progression of RE according to the histopathology and clinical presentation, which aimed at the initial damage to the brain by T cells and microglia in the early stage. However, the cerebral hemispherectomy is an effective means to controlling the intractable seizure, which is accompanied by neurological complications inevitably. So, the optimal timing for surgical intervention is still a challenge for RE patient. On the contrary, exploration on other aspects of pathogenesis such as dysfunction of adenosine system may offer a new therapeutic option for the treatment of RE in future.


Subject(s)
Encephalitis , Hemispherectomy , Child , Humans , Encephalitis/etiology , Encephalitis/therapy , Brain , Seizures , Atrophy/pathology
14.
Angew Chem Int Ed Engl ; 61(44): e202212780, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36082987

ABSTRACT

Designing water-deficient solvation sheath of Zn2+ by ligand substitution is a widely used strategy to protect Zn metal anode, yet the intrinsic tradeoff between Zn nucleation/dissolution kinetics and the side hydrogen evolution reaction (HER) remains a huge challenge. Herein, we find boric acid (BA) with moderate ligand field interaction can partially replace H2 O molecules in the solvation sheath of Zn2+ , forming a stable water-deficient solvation sheath. It enables fast Zn nucleation/dissolution kinetics and substantially suppressed HER. Crucially, by systematically comparing the ligand field strength and solvation energies between BA and the ever-reported electrolyte additives, we also find that the solvation energy has a strong correlation with Zn nucleation/dissolution kinetics and HER inhibition ability, displaying a classic volcano behavior. The modulation map could provide valuable insights for solvation sheath design of zinc batteries and beyond.

15.
Front Neurol ; 13: 954509, 2022.
Article in English | MEDLINE | ID: mdl-35968289

ABSTRACT

Background: Traumatic brain injury (TBI) has been recognized as an important and common cause of epilepsy since antiquity. Posttraumatic epilepsy (PTE) is usually associated with drug resistance and poor surgical outcomes, thereby increasing the burden of the illness on patients and their families. Vagus nerve stimulation (VNS) is an adjunctive treatment for medically refractory epilepsy. This study aimed to determine the efficacy of VNS for refractory PTE and to initially evaluate the potential predictors of efficacy. Methods: We retrospectively collected the outcomes of VNS with at least a 1-year follow-up in all patients with refractory PTE. Subgroups were classified as responders and non-responders according to the efficacy of VNS (≥50% or <50% reduction in seizure frequency). Preoperative data were analyzed to screen for potential predictors of VNS efficacy. Results: In total, forty-five patients with refractory PTE who underwent VNS therapy were enrolled. Responders were found in 64.4% of patients, and 15.6% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time, with 37.8, 44.4, 60, and 67.6% at the 3-, 6-, 12-, and 24-month follow-ups, respectively. After multivariate analysis, generalized interictal epileptic discharges (IEDs) were found to be a negative predictor (OR: 4.861, 95% CI: 1.145-20.632) of VNS efficacy. Conclusion: The results indicated that VNS therapy was effective in refractory PTE patients and was well tolerated over a 1-year follow-up period. Patients with focal or multifocal IEDs were recognized to have better efficacy after VNS therapy.

16.
J Neuroinflammation ; 19(1): 70, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35337341

ABSTRACT

BACKGROUND: The etiology of Rasmussen's encephalitis (RE), a rare chronic neurological disorder characterized by CD8+ T cell infiltration and unihemispheric brain atrophy, is still unknown. Various human herpes viruses (HHVs) have been detected in RE brain, but their contribution to RE pathogenesis is unclear. METHODS: HHVs infection and relevant immune response were compared among brain tissues from RE, temporal lobe epilepsy (TLE) and traumatic brain injury (TBI) patients. Viral antigen or genome, CD8+ T cells, microglia and innate immunity molecules were analyzed by immunohistochemical staining, DNA dot blot assay or immunofluorescence double staining. Cytokines were measured by multiplex flow cytometry. Cell apoptosis was visualized by TUNEL staining. Viral infection, immune response and the severity of unihemispheric atrophy were subjected to correlation analysis. RESULTS: Antigens of various HHVs were prevalent in RE and TLE brains, and the cumulative viral score of HHVs positively correlated with the unihemispheric atrophy in RE patients. CD8+ T cells infiltration were observed in both RE and TLE brains and showed co-localization with HHV antigens, but their activation, as revealed by Granzyme B (GZMB) release and apoptosis, was found only in RE. In comparison to TLE, RE brain tissues contained higher level of inflammatory cytokines, but the interferon-ß level, which was negatively correlated with cumulative viral score, was relatively lower. In line with this, the DNA sensor STING and IFI16, rather than other innate immunity signaling molecules, were insufficiently activated in RE. CONCLUSIONS: Compared with TBI, both RE and TLE had prevalently HHV infection and immune response in brain tissues. However, in comparison to TLE, RE showed insufficient activation of antiviral innate immunity but overactivation of cytotoxic T cells. Our results show the relatively lower level of antiviral innate immunity and overactivation of cytotoxic T cells in RE cases upon HHV infection, the overactivated T cells might be a compensate to the innate immunity but the causative evidence is lack in our study and need more investigation in the future.


Subject(s)
Encephalitis , Epilepsy, Temporal Lobe , Viruses , Brain/metabolism , Encephalitis/pathology , Epilepsy, Temporal Lobe/pathology , Humans , Interferon-beta , Viruses/metabolism
17.
Ther Adv Chronic Dis ; 13: 20406223211066738, 2022.
Article in English | MEDLINE | ID: mdl-35070253

ABSTRACT

BACKGROUND: Vagus nerve stimulation (VNS) is a therapeutic approach for patients with refractory postencephalitic epilepsy (PEE), which is characterized by drug resistance and disappointing surgical outcomes. However, the efficacy of VNS has not yet been studied in patients with refractory PEE. The present study aimed to demonstrate the efficacy of VNS and evaluate potential clinical predictors in patients with refractory PEE. METHODS: We retrospectively collected the outcomes of VNS with at least a 1-year follow-up in all patients with refractory PEE. Subgroups were classified as responders and non-responders according to the efficacy of VNS (⩾50% or < 50% reduction in seizure frequency). Preoperative data were analyzed to screen for potential predictors of VNS responsiveness. RESULTS: A total of 42 refractory PEE patients who underwent VNS therapy were enrolled, with an average age of 21.13 ± 9.70 years. Seizure frequency was reduced by more than 50% in 64.25% of patients, and 7.14% of patients achieved seizure-free events after VNS therapy. In addition, the response rates increased over time, with 40.5%, 50.0% and 57.1%, respectively at 6 months, 12 months, and 24 months after VNS therapy. Preoperative duration of epilepsy, monthly seizure frequency, and spatial distribution of interictal epileptic discharges (IEDs) were correlated with responders (p < 0.05) in the univariate analysis. Further multivariate regression analysis demonstrated that refractory PEE patients with high monthly seizure frequency or Focal IEDs (focal or multifocal epileptiform discharges) achieved better efficacy on VNS (p = 0.010, p = 0.003, respectively). CONCLUSION: VNS is an effective palliative therapy for patients with refractory PEE. Focal IEDs (focal or multifocal epileptiform discharges) and high seizure frequency were potential preoperative predictors of effectiveness after VNS therapy.

18.
Neuroimage Clin ; 33: 102918, 2022.
Article in English | MEDLINE | ID: mdl-34952352

ABSTRACT

Volumetric magnetic resonance imaging (MRI) atrophy is a hallmark of Rasmussen's encephalitis (RE). Here, we aim to investigate voxel-wise gray matter (GM) atrophy in RE, and its associations with glucose hypometabolism and neurotransmitter distribution utilizing MRI and PET data. In this study, fifteen RE patients and fourteen MRI normal subjects were included in this study. Voxel-wise GM volume and glucose metabolic uptake were evaluated using structural MRI and FDG-PET images, respectively. Spatial Spearman's correlation was performed between GM atrophy of RE with FDG uptake alterations, and neurotransmitter distributions provided in the JuSpace toolbox. Compared with the control group, RE patients displayed extensive GM volume loss not only in the ipsilateral hemisphere, but also in the frontal lobe, basal ganglia, and cerebellum in the contralateral hemisphere. Within the RE group, the insular and temporal cortices exhibited significantly more GM atrophy on the ipsilesional than the contralesional side. FDG-PET data revealed significant hypometabolism in areas surrounding the insular cortices in the ipsilesional hemisphere. RE-related GM volumetric atrophy was spatially correlated with hypomebolism in FDG uptake, and with spatial distribution of the dopaminergic and serotonergic neurotransmitter systems. The spatial concordance of morphological changes with metabolic abnormalities suggest FDG-PET offers potential value for RE diagnosis. The GM alterations associated with neurotransmitter distribution map could provide novel insight in understanding the neuropathological mechanisms and clinical feature of RE.


Subject(s)
Encephalitis , Magnetic Resonance Imaging , Atrophy/pathology , Encephalitis/diagnostic imaging , Encephalitis/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Metabolome
19.
J Neurosurg ; 136(3): 726-735, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34479194

ABSTRACT

OBJECTIVE: Vagus nerve stimulation (VNS) is an alternative treatment option for individuals with refractory epilepsy, with nearly 40% of patients showing no benefit after VNS and only 6%-8% achieving seizure freedom. It is presently unclear why some patients respond to treatment and others do not. Therefore, identification of biomarkers to predict efficacy of VNS is of utmost importance. The objective of this study was to explore whether genetic variations in genes involved in adenosine kinase (ADK), ecto-5'-nucleotidase (NT5E), and adenosine A1 receptor (A1R) are linked to outcome of VNS in patients with refractory epilepsy. METHODS: Thirty single-nucleotide polymorphisms (SNPs), including 9 in genes encoding ADK, 3 in genes encoding NT5E, and 18 in genes encoding A1R, were genotyped in 194 refractory epilepsy patients who underwent VNS. The chi-square test and binary logistic regression were used to determine associations between genetic differences and VNS efficacy. RESULTS: A significant association between ADK SNPs rs11001109, rs7899674, and rs946185 and seizure reduction with VNS was found. Regardless of sex, age, seizure frequency and type, antiseizure drug use, etiology, and prior surgical history, all patients (10/10 patients [100%]) with minor allele homozygosity at rs11001109 (genotype AA) or rs946185 (AA) achieved > 50% seizure reduction and 4 patients (4/10 [40%]) achieved seizure freedom. VNS therapy demonstrated higher efficacy among carriers of minor allele rs7899674 (CG + GG) (68.3% vs 48.8% for patients with major allele homozygosity). CONCLUSIONS: Homozygous ADK SNPs rs11001109 (AA) and rs946185 (AA), as well as minor allele rs7899674 (CG + GG), may serve as useful biomarkers for prediction of VNS therapy outcome.


Subject(s)
Adenosine Kinase , Drug Resistant Epilepsy , Epilepsy , Vagus Nerve Stimulation , Adenosine Kinase/genetics , Biomarkers , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/therapy , Epilepsy/drug therapy , Humans , Polymorphism, Single Nucleotide/genetics , Seizures/therapy , Treatment Outcome , Vagus Nerve
20.
Front Neurol ; 13: 1074997, 2022.
Article in English | MEDLINE | ID: mdl-36686529

ABSTRACT

Objective: Vagus nerve stimulation (VNS) is an adjunctive treatment for pharmacoresistant epilepsy. Encephalomalacia is one of the most common MRI findings in the preoperative evaluation of patients with pharmacoresistant epilepsy. This is the first study that aimed to determine the effectiveness of VNS for pharmacoresistant epilepsy secondary to encephalomalacia and evaluate the potential predictors of VNS effectiveness. Methods: We retrospectively analyzed the seizure outcomes of VNS with at least 1 year of follow-up in all patients with pharmacoresistant epilepsy secondary to encephalomalacia. Based on the effectiveness of VNS (≥50% or <50% reduction in seizure frequency), patients were divided into two subgroups: responders and non-responders. Preoperative data were analyzed to screen for potential predictors of VNS effectiveness. Results: A total of 93 patients with epilepsy secondary to encephalomalacia who underwent VNS therapy were recruited. Responders were found in 64.5% of patients, and 16.1% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time, with 36.6, 50.5, 64.5, and 65.4% at the 3-, 6-, 12-, and 24-month follow-ups, respectively. After multivariate analysis, seizure onset in adults (>18 years old) (OR: 0.236, 95%CI: 0.059-0.949) was found to be a positive predictor, and the bilateral interictal epileptic discharges (IEDs) (OR: 3.397, 95%CI: 1.148-10.054) and the bilateral encephalomalacia on MRI (OR: 3.193, 95%CI: 1.217-8.381) were found to be negative predictors of VNS effectiveness. Conclusion: The results demonstrated the effectiveness and safety of VNS therapy in patients with pharmacoresistant epilepsy secondary to encephalomalacia. Patients with seizure onset in adults (>18 years old), unilateral IEDs, or unilateral encephalomalacia on MRI were found to have better seizure outcomes after VNS therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...