Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(24): 16649-16660, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784422

ABSTRACT

Currently, the surface structure modification of photocatalysts is one of the effective means of enhancing their photocatalytic efficiency. Therefore, it is critically important to gain a deeper understanding of how the surface of α-Fe2O3 photocatalysts influences catalytic activity at the nanoscale. In this work, α-Fe2O3 catalysts were prepared using the solvothermal method, and four distinct morphologies were investigated: hexagonal bipyramid (THB), cube (CB), hexagonal plate (HS), and spherical (RC). The results indicate that the hexagonal bipyramid (THB) exhibits the highest degradation activity towards tetracycline (TC), with a reaction rate constant of k = 0.0969 min-1. The apparent reaction rate constants for the cube (CB), hexagonal plate (HS), and spherical (RC) morphologies are 0.0824, 0.0726, and 0.0585 min-1, respectively. In addition, it has been observed that the enhancement of photocatalytic activity is closely related to the increase in surface area, which provides more opportunities for interactions between Fe2+ and holes. The quenching experiments and electron paramagnetic resonance (EPR) results indicate that the ˙O2, ˙OH and h+ contribute mainly to the degradation of TC in the system. This research contributes to a more comprehensive understanding of catalyst surface alterations and their impact on catalytic performance.

2.
Chem Commun (Camb) ; 59(60): 9235-9238, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37424229

ABSTRACT

We propose a novel strategy for the synthesis of pyruvic acid from bio-lactic acid in air. Polyvinylpyrrolidone can regulate the growth of the crystal face and formation of oxygen vacancies, in which a synergy of the facet and vacancies boosted the oxidative dehydrogenation of lactic acid into pyruvic acid.

3.
Carbohydr Polym ; 299: 120079, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876761

ABSTRACT

In this work, a polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel (PEI-CS/Ce-UIO-66) was prepared using the ex-situ blend method. The synthesized composite hydrogel was characterized by SEM, EDS, XRD, FTIR, BET, XPS, and TG techniques, while the zeta potential was recorded for sample analysis. The adsorbent performance was studied by conducting adsorption experiments using methyl orange (MO), which showed that PEI-CS/Ce-UIO-66 exhibited excellent MO adsorption properties (900.5 ± 19.09 mg/g). The adsorption kinetics of PEI-CS/Ce-UIO-66 could be explained by the pseudo-second-order kinetic model, and its isothermal adsorption followed the Langmuir model. Thermodynamics showed that the adsorption was spontaneous and exothermic at low temperatures. MO could interact with PEI-CS/Ce-UIO-66 via electrostatic interaction, π-π stacking, and hydrogen bonding. The results indicated that the PEI-CS/Ce-UIO-66 composite hydrogel could potentially be used for the adsorption of anionic dyes.

4.
RSC Adv ; 12(4): 1950-1960, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425277

ABSTRACT

As a biomass resource, corncob is a kind of agricultural by-product with wide sources and low cost. Because its composition contains a large number of functional polymers such as cellulose, chitosan, and semi chitosan, corncob can be chemically modified to prepare a variety of adsorption materials. In this study, a magnetic gel material (PEI-CC@Fe3O4) consisting of corncob modified by glutaraldehyde-crosslinked polyethyleneimine (PEI) was successfully prepared and applied to the adsorption of heavy metal ions in aqueous solutions. The structure, thermal stability, and adsorption of heavy metal ions of the magnetic gel material (PEI-CC@Fe3O4) were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction phase analysis (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results showed that PEI was crosslinked to the corncob through Aldol reaction and Schiff-base reaction. The heavy metal ion adsorption experiment showed that the PEI-CC@Fe3O4 had better adsorption toward divalent copper ions and divalent lead ions at 303 K, and the maximum adsorption capacities reached 459.4 mg g-1 and 290.8 mg g-1, respectively. Moreover, the study of isothermal adsorption and adsorption kinetics shows that the adsorption process is pseudo-second-order kinetics model adsorption, which belongs to Langmuir isothermal adsorption. Such excellent adsorption performance will contribute to the application of corncob biomass materials in industrial polluted wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL