Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
2.
IDCases ; 37: e02022, 2024.
Article in English | MEDLINE | ID: mdl-39100729

ABSTRACT

Cryptococcus neoformans is a global invasive mycosis that is known to cause significant morbidity and mortality. It is commonly observed that individuals with compromised immune systems are more prone to developing cryptococcal meningitis. Although ocular involvement is rare, previous studies have indicated that ocular lesions precede symptomatic meningitis in only 27 % of patients with central nervous system involvement. Intraocular infections typically manifest as chorioretinopathy and vitreous inflammation, often leading to severe vision loss. In this case, we present the clinical details of a 57-year-old immunocompetent woman who visited the ophthalmology department of West China Hospital of Sichuan University with a progressive loss of vision in her right eye. After a thorough evaluation, she was diagnosed with fungal endophthalmitis, and subsequently initiated on appropriate induction anti-fungal therapy for cryptococcal meningoencephalitis. This case highlights the importance of early recognition and treatment, which can potentially improve the prognosis for patients.

3.
Inflammation ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39117788

ABSTRACT

Oral lichen planus (OLP) and oral lichenoid lesion (OLL) are chronic inflammatory diseases involving the oral mucosa. B cells infiltration in OLP and OLL, however, little is known about these cells in OLP and OLL. To analyze the function and infiltrating features of B lymphocytes in OLP and OLL, and to preliminarily evaluate their correlation with clinical outcomes. Tissue samples were collected from OLP, OLL, and healthy mucosa. The phenotypes and amounts of B cells in tissues were analyzed by single-cell sequencing. Their proportion and infiltrating features in tissues were examined by immunohistochemistry and immunofluorescence. With the systemic medication of corticoids, the correlation between B cells infiltrating characteristics and the clinical outcomes were evaluated. A quantified proportion increase of B cells was shown in both OLP and OLL. B cells in OLP demonstrated heightened activation and enhanced regulation in immune response. A cohort of 100 patients with OLP/OLL and 13 healthy controls were examined to investigate the B cells infiltration pattern. B cells were distributed in the superficial layer of lamina propria in 92.9% and 41.9% of OLP and OLL, respectively(P < 0.01); focally distributed in 25.0% and 62.9% of OLP and OLL, respectively(P < 0.01). With the systemic medication of corticoids, the cases with B cell infiltration (B+) in OLP and OLL groups showed a statistically significant reduction in REU scores before and after treatment (P < 0.01). B cells are widely present in OLP and OLL, and B cell infiltration in OLP and OLL are related to the better therapeutic effect of oral corticoids.

4.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012823

ABSTRACT

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Subject(s)
Neurons , Optogenetics , Silicon , Animals , Silicon/chemistry , Neurons/physiology , Mice , Optogenetics/methods , Calcium/metabolism , Light , Brain/physiology
5.
Light Sci Appl ; 13(1): 166, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009583

ABSTRACT

3-dB couplers, which are commonly used in photonic integrated circuits for on-chip information processing, precision measurement, and quantum computing, face challenges in achieving robust performance due to their limited 3-dB bandwidths and sensitivity to fabrication errors. To address this, we introduce topological physics to nanophotonics, developing a framework for topological 3-dB couplers. These couplers exhibit broad working wavelength range and robustness against fabrication dimensional errors. By leveraging valley-Hall topology and mirror symmetry, the photonic-crystal-slab couplers achieve ideal 3-dB splitting characterized by a wavelength-insensitive scattering matrix. Tolerance analysis confirms the superiority on broad bandwidth of 48 nm and robust splitting against dimensional errors of 20 nm. We further propose a topological interferometer for on-chip distance measurement, which also exhibits robustness against dimensional errors. This extension of topological principles to the fields of interferometers, may open up new possibilities for constructing robust wavelength division multiplexing, temperature-drift-insensitive sensing, and optical coherence tomography applications.

6.
Nitric Oxide ; 149: 67-74, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38897561

ABSTRACT

Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.


Subject(s)
Hydrogen Sulfide , Signal Transduction , Thiosulfates , Thiosulfates/chemistry , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Humans , Animals , Signal Transduction/drug effects
7.
BMC Ophthalmol ; 24(1): 259, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880899

ABSTRACT

BACKGROUND: The anatomic structure of the anterior chamber (AC) helps to explain differences in refractive status in school-aged children and is closely associated with primary angle closure (PAC). The aim of this study was to quantify and analyze the anterior chamber and angle (ACA) characteristics in Chinese children with different refractive status by swept-source optical coherence tomography (SS-OCT). METHODS: In a cross-sectional observational study, 383 children from two primary schools in Shandong Province, China, underwent a complete ophthalmic examination. First, the anterior chamber depth (ACD), anterior chamber width (ACW), angle-opening distance (AOD), and trabecular-iris space area (TISA) were evaluated automatically using a CASIA2 imaging device. AOD and TISA were measured at 500, 750 µm nasal (N1 and N2, respectively), and temporal (T1 and T2, respectively) to the scleral spur (SS). Cycloplegic refraction and axial length (AL) were then measured. According to spherical equivalent refraction (SER), the children were assigned to hyperopic (SER > 0.50D), emmetropic (-0.50D < SER ≤ 0.50D), and myopic groups (SER ≤ -0.50D). RESULTS: Out of the 383 children, 349 healthy children (160 girls) with a mean age of 8.23 ± 1.06 years (range: 6-11 years) were included. The mean SER and AL were - 0.10 ± 1.57D and 23.44 ± 0.95 mm, respectively. The mean ACD and ACW were 3.17 ± 0.24 mm and 11.69 ± 0.43 mm. The mean AOD were 0.72 ± 0.25, 0.63 ± 0.22 mm at N1, T1, and 0.98 ± 0.30, 0.84 ± 0.27 mm at N2, T2. The mean TISA were 0.24 ± 0.09, 0.22 ± 0.09mm2 at N1, T1, and 0.46 ± 0.16, 0.40 ± 0.14mm2 at N2, T2. The myopic group had the deepest AC and the widest angle. Compared with boys, girls had shorter AL, shallower ACD, narrower ACW, and ACA (all p < 0.05). By Pearson's correlation analysis, SER was negatively associated with ACD, AOD, and TISA. AL was positively associated with ACD, ACW, AOD, and TISA. In the multiple regression analysis, AOD and TISA were associated with deeper ACD, narrower ACW, and longer AL. CONCLUSION: In primary school students, the myopic eyes have deeper AC and wider angle. ACD, ACW, AOD, and TISA all increase with axial elongation. ACA is highly correlated with deeper ACD.


Subject(s)
Anterior Chamber , Refraction, Ocular , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Child , Female , Male , Anterior Chamber/diagnostic imaging , Anterior Chamber/pathology , China/epidemiology , Refraction, Ocular/physiology , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/diagnosis , Glaucoma, Angle-Closure/ethnology , Refractive Errors/physiopathology , East Asian People
8.
Nucleic Acids Res ; 52(12): 7096-7111, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38783009

ABSTRACT

Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.


Subject(s)
Amino Acyl-tRNA Synthetases , Nucleic Acid Conformation , RNA, Transfer , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Catalytic Domain , Genetic Code , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Substrate Specificity , Leucine-tRNA Ligase/metabolism , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics
9.
Sci Total Environ ; 939: 173632, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38821268

ABSTRACT

Soil organic carbon (SOC) dynamics are strongly controlled by plant roots. Yet, how variation of root traits under precipitation change influences SOC stability remains unclear. As part of a 5-year field experiment manipulating precipitation including 90 % (0.1P), 50 % (0.5P), 30 % (0.7P) decrease, and 50 % increase (1.5P), this study was designed to assess the effects of changing precipitation on root traits and production dynamics by minirhizotron and examine how such influences regulate SOC stability in an alpine meadow on the Qinghai-Tibetan Plateau. We found that root length density (RLD), specific root length (SRL), root branching intensity (RBI), and root residue carbon input (RC input) exhibited no significant response, whereas root turnover (RT), root carbon (C), nitrogen (N) concentrations and C/N ratio were altered by precipitation change with nonlinear trends. Absorptive root RT positively correlated to manipulated precipitation within the interannual precipitation range in topsoil, but it showed no significant change under extreme drought treatment. Alpine meadows can maintain the SOC content and density under varied precipitation. However, it showed significant variation in aggregate stability and organic carbon (OC) distribution in aggregates in topsoil, which were mainly due to the strong direct effects of soil moisture and partly related to RLD and RC input of transport roots. Although subsurface soil aggregate stability and OC associated with aggregates were not modified, our results indicated a risk of SOC stability variation in subsurface soil if absorptive root RT and SRL changed. These findings provide vital information to predict responses of SOC dynamics of alpine meadow to future climate change.

10.
Exp Ther Med ; 27(4): 147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476889

ABSTRACT

The mitochondrial calcium uniporter (MCU) is a major protein for the uptake of mitochondrial calcium to regulate intracellular energy metabolism, including processes such as mitophagy. The present study investigated the effect of the MCU on mitophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP) in vitro. The normal human PDECs (HPDE6-C7) were treated with caerulein (CAE) to induce AP-like changes, with or without ruthenium red to inhibit the MCU. The mitochondrial membrane potentials (MMPs) and mitochondrial Ca2+ levels were analyzed by fluorescence. The expression levels of MCU, LC3, p62, and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), putative kinase 1 (PINK1), and Parkin were measured by western blotting and immunofluorescence. Mitophagy was observed by confocal fluorescence microscopy and transmission electron microscopy. The results showed that CAE increased the MCU protein expression, mitochondrial Ca2+ levels, MMP depolarization and the protein expression of mitophagy markers including the LC3II/I ratio, PINK1, and Parkin. CAE decreased the protein expression of p62 and TOMM20, and promoted the formation of mitophagosomes in HPDE6-C7 cells. Notably, changes in these markers were reversed by inhibiting the MCU. In conclusion, an activated MCU may promote mitophagy by regulating the PINK1/Parkin pathway in PDECs in AP.

11.
Sci Rep ; 14(1): 1622, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238454

ABSTRACT

This study aimed to develop and validate a predictive model to determine the risk of in-hospital mortality in patients with acute paraquat poisoning. This retrospective observational cohort study included 724 patients with acute paraquat poisoning whose clinical data were collected within 24 h of admission. The primary outcome was in-hospital mortality. Patients were randomly divided into training and validation cohorts (7/3 ratio). In the training cohort, the least absolute shrinkage and selection operator regression models were used for data dimension reduction and feature selection. Multivariate logistic regression was used to generate a predictive nomogram for in-hospital mortality. The prediction model was assessed for both the training and validation cohorts. In the training cohort, decreased level of consciousness (Glasgow Coma Scale score < 15), neutrophil-to-lymphocyte ratio, alanine aminotransferase, creatinine, carbon dioxide combining power, and paraquat plasma concentrations at admission were identified as independent predictors of in-hospital mortality in patients with acute paraquat poisoning. The calibration curves, decision curve analysis, and clinical impact curves indicated that the model had a good predictive performance. It can be used on admission to the emergency department to predict mortality and facilitate early risk stratification and actionable measures in clinical practice after further external validation.


Subject(s)
Nomograms , Paraquat , Humans , Hospital Mortality , Prognosis , Retrospective Studies
12.
Small Methods ; : e2301405, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168901

ABSTRACT

Currently, the copolymer of dopamine (DA) and pyrrole (PY) via chemical and electrochemical oxidation usually requires additional oxidants, and lacks flexibility in regulating the size and morphology, thereby limiting the broad applications of DA-PY copolymer in biomedicine. Herein, the semiquinone radicals produced by the self-oxidation of DA is ingeniously utilized as the oxidant to initiate the following copolymerization with PY, and a series of quinone-rich polydopamine-pyrrole copolymers (PDAm -nPY) with significantly enhanced absorption in near-infrared (NIR) region without any additional oxidant assistance is obtained. Moreover, the morphology and size of PDAm -nPY can be regulated by changing the concentration of DA and PY, thereby optimizing nanoscale PDA0.05 -0.15PY particles (≈ 150 nm) with excellent NIR absorption and surface modification activity are successfully synthesized. Such PDA0.05 -0.15PY particles show effective photoacoustic (PA) imaging and photothermal therapy (PTT) against 4T1 tumors in vivo. Furthermore, other catechol derivatives can also copolymerize with PY under the same conditions. This work by fully utilizing the semiquinone radical active intermediates produced through the self-oxidation of DA reduces the dependence on external oxidants in the synthesis of composite materials and predigests the preparation procedure, which provides a novel, simple, and green strategy for the synthesis of other newly catechol-based functional copolymers.

13.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260702

ABSTRACT

The chief barrier to studies of how genetic coding emerged is the lack of experimental models for ancestral aminoacyl-tRNA synthetases (AARS). We hypothesized that conserved core catalytic sites could represent such ancestors. That hypothesis enabled engineering functional "urzymes" from TrpRS, LeuRS, and HisRS. We describe here a fourth urzyme, GlyCA, detected in an open reading frame from the genomic record of the arctic fox, Vulpes lagopus. GlyCA is homologous to a bacterial heterotetrameric Class II GlyRS-B. Alphafold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to the HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment. Enzymatic characterization revealed a robust single-turnover burst size and a catalytic rate for ATP consumption well in excess of that previously published for HisCA1. Time-dependent aminoacylation of tRNAGly proceeds at a rate consistent with that observed for amino acid activation. In fact, GlyCA is actually 35 times more active in glycine activation by ATP than the full-length GlyRS-B α-subunit dimer. ATP-dependent activation of the 20 canonical amino acids favors Class II amino acids that complement those favored by HisCA and LeuAC. These properties reinforce the notion that urzymes represent the requisite ancestral catalytic activities to implement a reduced genetic coding alphabet.

14.
Nano Lett ; 24(5): 1635-1641, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277778

ABSTRACT

We present an on-chip filter with a broad tailorable working wavelength and a single-mode operation. This is realized through the application of topological photonic crystal nanobeam filters employing synthesis parameter dimensions. By introducing the translation of air holes as a new synthetic parameter dimension, we obtained nanobeams with tunable Zak phases. Leveraging the bulk-edge correspondence, we identify the existence of topological cavity modes and establish a correlation between the cavity's interface morphology and working wavelength. Through experiments, we demonstrate filters with adjustable filtering wavelengths ranging from 1301 to 1570 nm. Our work illustrates the use of the synthetic translation dimension in the design of on-chip filters, and it holds potential for applications in other devices such as microcavities.

15.
Int J Biol Macromol ; 258(Pt 2): 129102, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163499

ABSTRACT

The slow water-absorption speed of starch-based superabsorbent resin (St-SAP) limits its application. In this study, porous St-SAP (P-St-SAP) was prepared by inverse suspension polymerization and supercritical CO2 drying, the aim is to provide a preparation method of fast absorbent resin. The P-St-SAP at 33 % starch content had an interpenetrating porous structure with macropores, mesopores and micropores, and the surface area, pore volume and average pore diameter were 32.06 m2·g-1, 0.116 cm3·g-1 and 21.6 nm, respectively. The water-absorption process included rapid-section, medium-section and slow-section, according with internal diffusion, double-constant and quasi second-order kinetic models, respectively. In the initial 30 s, a water-absorption speed of 262.6 g·g-1·min-1 in distilled water was much higher than some previous research results, and the equilibrium absorption value of 517.9 g·g-1 in distilled water and 72.9 g·g-1 in 0.9 % saline was better than that of non-porous St-SAP at similar starch content. Moreover, at the same stage the percentage of saline absorption ratio to equilibrium absorption value was 1.0- 2.0 times higher than that of distilled water. These research results indicate that the P-St-SAP has fast water-absorption speed and good salt resistance, which will have greater application prospects in sanitary materials, building concrete pouring, and flood control blocking piping.


Subject(s)
Carbon Dioxide , Water , Water/chemistry , Starch/chemistry , Porosity , Polymerization
16.
Open Life Sci ; 19(1): 20220806, 2024.
Article in English | MEDLINE | ID: mdl-38283117

ABSTRACT

This study aimed to clarify the role of la-related protein 1 (LARP1) in cell cycle progression and metastatic behavior of cultured gastric carcinoma (GC) cells. To do that, LARP1 expression was detected in clinical GC tissues and cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The cell viability, apoptosis, cell cycle, migration, invasion, and cell growth were examined using a Cell Counting Kit-8, Annexin V-FITC staining, propidium iodide staining, Transwell migration and invasion assays, and colony formation assays after LARP1 knockdown. Phosphatidyl inositol 3-kinase (PI3K) and AKT1 mRNA and protein expression levels of PI3K, p-AKT1, AKT1, p-BAD, p-mTOR, and p21 in si-LARP1 transfected GC cells were determined using qRT-PCR and western blotting. Here, we've shown that LARP1 expression was upregulated in human GC tissues and KATO III cells. LARP1 knockdown inhibited GC cell proliferation, cell cycle progression, migration, invasion, and colony formation and promoted apoptosis. In si-LARP1-transfected KATO III cells, the mRNA expression levels of PI3K and AKT1, PI3K protein expression, and the p-AKT1/AKT1 ratio were significantly suppressed. p-mTOR and p-BAD were significantly decreased, whereas p21 was significantly increased in si-LARP1-transfected KATO III cells. In conclusion LARP1 knockdown induces apoptosis and inhibits cell cycle progression and metastatic behavior via PI3K/AKT1 signaling in GC cells.

17.
Food Funct ; 15(4): 1758-1778, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38240135

ABSTRACT

Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.


Subject(s)
Biological Products , Diabetes Mellitus , Humans , Biological Products/pharmacology , Biological Products/therapeutic use , Diabetes Mellitus/drug therapy , Antioxidants/analysis , Vegetables , Fruit/chemistry
18.
Oral Dis ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135895

ABSTRACT

OBJECTIVE: Midpalatal expansion (MPE) is routinely employed to treat transverse maxillary arch deficiency. Neutrophils are indispensable for recruiting bone marrow stromal cells (BMSCs) at the initial stage of bone regeneration. This study aimed to explore whether neutrophils participate in MPE and how they function during bone formation under mechanical stretching. MATERIALS AND METHODS: The presence and phenotype of neutrophils in the midpalatal suture during expansion were detected by flow cytometry and immunofluorescence staining. The possible mechanism of neutrophil recruitment and polarization was explored in vitro by exposing vascular endothelial cells (VECs) to cyclic tensile strain. RESULTS: The number of neutrophils in the distracted suture peaked on Day 3, and N2-type neutrophils significantly increased on Day 5 after force application. The depletion of circulatory neutrophils reduced bone volume by 43.6% after 7-day expansion. The stretched VECs recruited neutrophils via a CXCR2 mechanism in vitro, which then promoted BMSC osteogenic differentiation through the VEGFA/VEGFR2 axis. Consistently, these neutrophils showed higher expression of canonical N2 phenotype genes, including CD206 and Arg1. CONCLUSIONS: These results suggested that neutrophils participated in early bone formation during MPE. Based on these findings, we propose that stretched VECs recruited and polarized neutrophils, which, in turn, induced BMSC osteogenic differentiation.

19.
Front Endocrinol (Lausanne) ; 14: 1154927, 2023.
Article in English | MEDLINE | ID: mdl-37937050

ABSTRACT

Aim: To explore the risk factors of osteoporosis in postmenopausal women in China. Method: This study collected all patient data from January 2014 to December 2015. Basic information and questionnaires were collected from 524 postmenopausal women in Sanya and Hainan Province. The questionnaire was administered to the enrolled participants by endocrinologists. Biochemical parameters were measured using fasting blood samples, and bone density was measured by dual energy X-ray absorptiometry at the department of radiology of Hainan hospital, PLA General Hospital. Participants with an R-value of ≤-2.5 were diagnosed with osteoporosis. After deleting missing values for each factor, 334 participants were divided into the osteoporosis (n=35) and non-osteoporosis (n=299) groups according to the R-values. Results: The participants had a median age of 60.8 years (range: 44-94 years). Among the 334 postmenopausal women included in this study, 35 (10.5%) were diagnosed with osteoporosis. Univariate analysis showed statistically significant differences in age, BMI, type of work, alkaline phosphatase, years of smoking, blood calcium levels, kyphosis, fracture, and asthma between the two groups (P<0.05). In addition, multivariate logistic analysis showed that age (odds ratio [OR]: 1.185, 95% confidence interval [CI]: 1.085-1.293, P<0.001) and kyphosis times (OR:1.468, 95% CI: 1.076-2.001, P=0.015) were positively correlated with postmenopausal osteoporosis, whereas BMI (OR: 0.717, 95% CI: 0.617-0.832, P<0.001), blood calcium levels (OR: 0.920, 95% CI: 0.854-0.991, P=0.027), vitamin D levels (OR: 0.787, 95% CI: 0.674-0.918, P=0.002), and outdoor activity time (OR: 0.556, 95% CI: 0.338-0.915, P=0.021) were negatively correlated with postmenopausal osteoporosis. Conclusion: Low BMI, blood calcium and vitamin D levels, kyphosis time, and outdoor activity time are independent risk factors for osteoporosis in postmenopausal women.


Subject(s)
Kyphosis , Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Vitamin D , Calcium , Osteoporosis, Postmenopausal/etiology , Osteoporosis, Postmenopausal/complications , Body Mass Index , Postmenopause , Osteoporosis/etiology , Vitamins , Risk Factors , Kyphosis/complications
20.
Metabolites ; 13(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37999233

ABSTRACT

Fat deposition and off-flavor in the muscle are the main problems affecting flesh quality in aquaculture fish, especially in catfish, leading to low acceptability and reduced market price. Yellow catfish is an important aquaculture fish in China. In this study, 40 days of depuration and starvation treatment were explored to improve the muscle quality of aquaculture yellow catfish. After depuration and starvation, the body weight, condition factor (CF) and mesenteric fat index (MFI) were all significantly decreased 20 days after treatment. The metabolomic profiles in muscle were characterized to analyze the muscle quality in yellow catfish. The results showed that the content of ADP, AMP, IMP, glutamic acid and taurine were significantly increased between 20 and 40 days post-treatment in the muscle of yellow catfish during the treatment, which was positively associated with the flesh tenderness and quality. In contrast, aldehydes and ketones associated with off-flavors and corticosterone associated with bitter taste were all decreased at 20 days post-treatment. Considering the balance of body weight loss and flesh quality improvement, depuration and starvation for around 20 days is suitable for aquaculture yellow catfish. Our study not only provides an effective method to improve the flesh quality of aquaculture yellow catfish but also reveals the potential mechanism in this process.

SELECTION OF CITATIONS
SEARCH DETAIL