Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38794960

ABSTRACT

AIM: Cognitive impairments are a core feature of first-episode psychosis (FEP) and one of the strongest predictors of long-term psychosocial functioning. Cognition should be assessed and treated as part of routine clinical care for FEP. Cognitive screening offers the opportunity to rapidly identify and triage those in most need of cognitive support. However, there are currently no validated screening measures for young people with FEP. CogScreen is a hybrid effectiveness-implementation study which aims to evaluate the classification accuracy (relative to a neuropsychological assessment as a reference standard), test-retest reliability and acceptability of two cognitive screening tools in young people with FEP. METHODS: Participants will be 350 young people (aged 12-25) attending primary and specialist FEP treatment centres in three large metropolitan cities (Adelaide, Sydney, and Melbourne) in Australia. All participants will complete a cross-sectional assessment over two sessions including two cognitive screening tools (Screen for Cognitive Impairment in Psychiatry and Montreal Cognitive Assessment), a comprehensive neuropsychological assessment battery, psychiatric and neurodevelopmental assessments, and other supplementary clinical measures. To determine the test-retest reliability of the cognitive screening tools, a subset of 120 participants will repeat the screening measures two weeks later. RESULTS: The protocol, rationale, and hypotheses for CogScreen are presented. CONCLUSIONS: CogScreen will provide empirical evidence for the validity and reliability of two cognitive screening tools when compared to a comprehensive neuropsychological assessment. The screening measures may later be incorporated into clinical practice to assist with rapid identification and treatment of cognitive deficits commonly experienced by young people with FEP.

2.
Cell Stem Cell ; 31(6): 803-817.e6, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38663406

ABSTRACT

Due to the limitations of autologous chimeric antigen receptor (CAR)-T cells, alternative sources of cellular immunotherapy, including CAR macrophages, are emerging for solid tumors. Human induced pluripotent stem cells (iPSCs) offer an unlimited source for immune cell generation. Here, we develop human iPSC-derived CAR macrophages targeting prostate stem cell antigen (PSCA) (CAR-iMacs), which express membrane-bound interleukin (IL)-15 and truncated epidermal growth factor receptor (EGFR) for immune cell activation and a suicide switch, respectively. These allogeneic CAR-iMacs exhibit strong antitumor activity against human pancreatic solid tumors in vitro and in vivo, leading to reduced tumor burden and improved survival in a pancreatic cancer mouse model. CAR-iMacs appear safe and do not exhibit signs of cytokine release syndrome or other in vivo toxicities. We optimized the cryopreservation of CAR-iMac progenitors that remain functional upon thawing, providing an off-the-shelf, allogeneic cell product that can be developed into CAR-iMacs. Overall, our preclinical data strongly support the potential clinical translation of this human iPSC-derived platform for solid tumors, including pancreatic cancer.


Subject(s)
Antigens, Neoplasm , GPI-Linked Proteins , Induced Pluripotent Stem Cells , Macrophages , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Animals , Macrophages/immunology , Macrophages/metabolism , Mice , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Induced Pluripotent Stem Cells/metabolism , GPI-Linked Proteins/metabolism , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Neoplasm Proteins/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Immunotherapy, Adoptive/methods , Mice, SCID
3.
Cell ; 187(3): 624-641.e23, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211590

ABSTRACT

The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.


Subject(s)
Granzymes , Immunity, Innate , Lymphocytes , Neoplasms , Animals , Humans , Mice , Apoptosis , Cytokines , Neoplasms/immunology , Neoplasms/therapy
4.
Biosci Rep ; 43(11)2023 11 30.
Article in English | MEDLINE | ID: mdl-37883219

ABSTRACT

OBJECTIVES: Alanine aminotransferase (ALT) expression is highly elevated in the serum of patients with hepatocellular carcinoma. However, the role of ALT isoenzymes in the total ALT activity remains unclear. In the present study, we systematically investigated the role of ALT isoenzymes in alcoholic and non-alcoholic fatty liver cancer. MATERIALS AND METHODS: The expression of ALT1 and ALT2 at the mRNA and protein levels in 25 paired primary liver cancer tissues was detected by reverse transcription quantitative PCR (RT-qPCR), Western blotting, and immunohistochemistry. Serum ALT activity was determined using an automated biochemical analyzer. RESULTS: The mRNA and protein expression levels of ALT1 and ALT2 were lower in the tissues of alcoholic and non-alcoholic fatty liver cancers than in the paracancerous tissues. Notably, ALT2 was highly expressed in non-alcoholic fatty liver cancer tissues compared with alcoholic fatty liver cancer tissues. Total serum ALT activity was mainly contributed by ALT1 in alcoholic fatty liver cancer, whereas ALT1 contributed only marginally more to the total ALT activity than ALT2 in non-alcoholic fatty liver cancer. ALT2/ALT1 ratio can well discriminate normal control group, alcoholic liver cancer and non-alcoholic liver cancer. CONCLUSION: ALT1 contributed more to the total ALT activity than ALT2 in both alcoholic and non-alcoholic fatty liver cancer. Serum ALT2 to ALT activity was higher in non-alcoholic fatty liver cancer than that in alcoholic fatty liver cancer. ALT2/ALT1 ratio has some diagnostic significance for alcoholic and non-alcoholic liver cancer.


Subject(s)
Fatty Liver, Alcoholic , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Alanine Transaminase , Isoenzymes/metabolism , Fatty Liver, Alcoholic/diagnosis , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Messenger/metabolism , Liver/metabolism
5.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711868

ABSTRACT

Innate lymphocytes can mediate cancer immunosurveillance and protect against disease. We have demonstrated that mouse type I innate lymphoid cells (ILC1s) can contribute to controlling the growth of acute myeloid leukemia (AML). However, the functional roles of human ILC1s in AML remain largely undefined. Here, we found that the ILC1s in patients with AML are impaired while a high expression of the ILC1 gene signature is associated with better overall survival in AML. By directly interacting with leukemia stem cells (LSCs), human ILC1s can eliminate LSCs via production of IFNγ and block LSC differentiation into M2 macrophage-like, leukemia-supporting cells through TNF. Collectively, these effects converge to limit leukemogenesis in vivo. We also identified Lin-CD127+CD161-CRTH2-CD117- cells as the human ILC1 subset. The use of umbilical cord blood (UCB) CD34+ hematopoietic stem cells to generate CD161- ILC1s could allow for a readily available supply of ILC1s to be produced for human adoptive transfer studies. Together, our findings provide evidence that targeting human ILC1s may be a promising therapeutic approach for prolongation of disease-free survival in AML.

6.
Biosens Bioelectron ; 179: 113102, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33636502

ABSTRACT

Herein, based on a dual-recognition strategy and BSA@Ag@Ir metallic-organic nanoclusters (BSA@Ag@Ir MONs), a highly specific and sensitive cytosensor was developed for detecting circulating tumor cells (CTCs). To amplify current signal, novel BSA@Ag@Ir MONs with outstanding catalytic activity and huge specific surface area were synthesized, and conjugated with hairpin DNA strands as signal probes. Orion carbon black 40 (Ocb40)//AuNPs were firstly used to modify electrode to increase its conductivity and surface area. Moreover, the dual recognition strategy based on DNA proximity effect was designed to improve the specificity of cytosensor. When two capture probes respectively bound to two adjacent membrane markers of target cells, the probes could form the associative toehold through the proximity effect to capture the signal probes. Only CTCs simultaneously expressing two membrane markers could be captured and generate current responses. The developed cytosensor could detect CTCs in the range of 3 - 3 × 106 cells mL-1 with a detection limit of 1 cell mL-1. Notably, the cytosensor could accurately identify CTCs even in whole blood. Therefore, this cytosensor has great potential for application in biological science, biomedical engineering and personalized medicine.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Neoplastic Cells, Circulating , Gold , Humans , Silver
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2287-2290, 2020 07.
Article in English | MEDLINE | ID: mdl-33018464

ABSTRACT

Mitochondria play a critical role in regulating cellular processes including ATP production, intracellular calcium signaling and generation of reactive oxidative species (ROS). Neurons rely on mitochondrial function to perform a range of complex processes, and mitochondrial dysfunctions have been shown to have an impact in pathologies of the nervous system. Yet, neurons contain a finite number of mitochondria, and their location is known to change in response to a number of factors including age and cellular activity, thereby impacting neuronal response. In this paper, we introduce a novel computational model of mitochondria motility that focuses on their movements along the axon. We describe the biological processes involved and the main parameters of the model. We use the model to investigate how some of these parameters affect the ability of mitochondria to position themselves in regions of high energy demand. Finally, we discuss the significance of our work and its downstream applications in further understanding pathologies of the nervous system such as Alzheimer's disease, and help identify potential novel therapeutic targets.


Subject(s)
Axons , Mitochondria , Calcium Signaling , Cell Movement , Mitochondria/metabolism , Neurons
8.
J Biomater Sci Polym Ed ; 29(18): 2252-2266, 2018 12.
Article in English | MEDLINE | ID: mdl-30311855

ABSTRACT

Due to the syringeability of precursor solution and convenience of open surgical treatment, injectable hydrogels have gained growing attention in drug delivery application. For load-bearing tissue, the excellent mechanical property is an important requirement for delivery vehicles to resist external stress and loads. Herein, we prepared mechanically robust injectable hydrogels (HA/γ-PGA hydrogels for short) using methacrylate-functionalized hyaluronic acid and poly (γ-glutamic acid) via photopolymerization. The HA/γ-PGA hydrogels showed outstanding anti-compression ability and could suffer a more than 80% strain. Meanwhile, after 5 cycles of compression, HA/γ-PGA hydrogels could still recover quickly against external stress, showing excellent shape recovery capability. Moreover, the mechanical properties could be modulated easily by changing the molar ratio of HA to γ-PGA. The drug release behavior was also evaluated and the drug-loaded HA/γ-PGA hydrogels showed a weak burst release and sustained release behavior. Additionally, HA/γ-PGA hydrogels also exhibited superior biocompatibility. Therefore, HA/γ-PGA hydrogels have great potential as injectable drug carriers for load-bearing tissue application.


Subject(s)
Cross-Linking Reagents/chemistry , Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Polyglutamic Acid/analogs & derivatives , Animals , Biocompatible Materials , Cattle , Drug Liberation , Epoxy Compounds/chemistry , Mechanical Phenomena , Methacrylates/chemistry , Photochemical Processes , Polyglutamic Acid/chemistry , Polymerization , Serum Albumin, Bovine/chemistry , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...