Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 32(3): 815-824, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33555854

ABSTRACT

The characterization of photoexcited electrons on the surface of nanomaterial remains challenging. Herein, laser excitation mass spectrometry combined with a chemical thermometer and electron acceptor has been developed to characterize the energetics and population density of photoexcited electrons transferred from gold nanoparticles (AuNPs). In contrast to laser fluence and bias voltage, the hot spots of closely packed AuNPs play a more significant role in enhancing the average energetics of photoexcited electrons, which can be harvested effectively by the electron acceptor. By harvesting more energetic photoexcited electrons for the desorption and ionization process, it is anticipated that the sensitive detection of biomarkers can be achieved, which is beneficial to metabolomic studies and early disease diagnosis.

3.
Phys Chem Chem Phys ; 19(31): 20795-20807, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28744541

ABSTRACT

Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm-2 to 125.9 mJ cm-2). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion-desorption efficiency and the extent of heat transfer, which could potentially enhance the analytical performance of SALDI-MS.

4.
ACS Omega ; 2(9): 6031-6038, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-30023759

ABSTRACT

A chemical printing method based on gold nanoparticle (AuNP)-assisted laser ablation has been developed. By rastering a thin layer of AuNPs coated on a rat kidney tissue section with a UV laser, biomolecules are extracted and immediately transferred/printed onto a supporting glass substrate. The integrity of the printed sample is preserved, as revealed by imaging mass spectrometric analysis. By studying the mechanism of the extraction/printing process, transiently molten AuNPs were found to be involved in the process, as supported by the color and morphological changes of the AuNP thin film. The success of this molecular printing method was based on the efficient laser-nanomaterial interaction, that is, the strong photoabsorption, laser-induced heating, and phase-transition properties of the AuNPs. It is anticipated that the molecular printing method can be applied to perform site-specific printing, which extracts and transfers biochemicals from different regions of biological tissue sections to different types of supporting materials for subsequent biochemical analysis with the preservation of the original tissue samples.

5.
ACS Appl Mater Interfaces ; 8(43): 29668-29675, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27750015

ABSTRACT

Metal alloy nanoparticles (NPs) offer a new combination of unique physicochemical properties based on their pure counterparts, which can facilitate the development of novel analytical methods. Here, we demonstrated that Ag-Au alloy NPs could be utilized for optical and mass spectrometric imaging of latent fingerprints (LFPs) with improved image contrast, stability, and detection sensitivity. Upon deposition of Ag-Au alloy NPs (Ag:Au = 60:40 wt %), ridge regions of the LFP became amber colored, while the groove regions appeared purple-blue. The presence of Au in the Ag-Au alloy NPs suppressed aggregation behavior compared to pure AgNPs, thus improving the stability of the developed LFP images. In addition, the Ag component in the Ag-Au alloy NPs enhanced optical absorption efficiency compared to pure AuNPs, resulting in higher contrast LFP images. Moreover, varying the Ag-Au ratio could enable the tuning of the resulting surface plasmonic resonance absorption and hence affect image contrast. Furthermore, the Ag-Au alloy NPs assisted the surface-assisted laser desorption/ionization MS analysis of chemical and biochemical compounds in LFPs, with better detection sensitivity than either pure AgNPs or AuNPs.

6.
Anal Chim Acta ; 919: 62-69, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27086100

ABSTRACT

With a coating of gold nanoparticles (AuNPs), over-the-counter (OTC) drugs and Chinese herbal medicine granules in KBr pellets could be analyzed by Fourier Transform Infra-red (FT-IR) spectroscopy and Surface-assisted Laser Desorption/Ionization mass spectrometry (SALDI-MS). FT-IR spectroscopy allows fast detection of major active ingredient (e.g., acetaminophen) in OTC drugs in KBr pellets. Upon coating a thin layer of AuNPs on the KBr pellet, minor active ingredients (e.g., noscapine and loratadine) in OTC drugs, which were not revealed by FT-IR, could be detected unambiguously using AuNPs-assisted LDI-MS. Moreover, phytochemical markers of Coptidis Rhizoma (i.e. berberine, palmatine and coptisine) could be quantified in the concentrated Chinese medicine (CCM) granules by the SALDI-MS using standard addition method. The quantitative results matched with those determined by high-performance liquid chromatography with ultraviolet detection. Being strongly absorbing in UV yet transparent to IR, AuNPs successfully bridged FT-IR and SALDI-MS for direct analysis of active ingredients in the same solid sample. FT-IR allowed the fast analysis of major active ingredient in drugs, while SALDI-MS allowed the detection of minor active ingredient in the presence of excipient, and also quantitation of phytochemicals in herbal granules.


Subject(s)
Drugs, Chinese Herbal/analysis , Gold/chemistry , Medicine, Chinese Traditional , Metal Nanoparticles/chemistry , Nonprescription Drugs/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Molecular Structure , Spectroscopy, Fourier Transform Infrared
7.
J Am Soc Mass Spectrom ; 25(9): 1515-20, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24924518

ABSTRACT

A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.


Subject(s)
Explosive Agents/analysis , Illicit Drugs/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Acetaminophen/analysis , Analgesics, Non-Narcotic/analysis , Anesthetics, Local/analysis , Breath Tests/instrumentation , Breath Tests/methods , Cocaine/analysis , Equipment Design , Gloves, Protective , Humans , Paper , Spectrometry, Mass, Electrospray Ionization/instrumentation , Static Electricity , Volatile Organic Compounds/analysis
8.
Rapid Commun Mass Spectrom ; 27(6): 713-21, 2013 Mar 30.
Article in English | MEDLINE | ID: mdl-23418151

ABSTRACT

RATIONALE: Despite various porous materials having been widely adopted as spraying tips for direct sample analysis using electrospray ionization mass spectrometry (ESI-MS), the effect of surface property and porosity of spraying tip materials on their analytical performances is not clear. Investigation of their relationships could provide insight into the proper choice and/or design of spraying tip materials for direct sample analysis. METHODS: The effect of spraying tip materials with different polarities, including polyester and polyethylene (hydrophobic) and wood (hydrophilic), on the detection sensitivity for a variety of compounds, and on the ESI onset voltage, were studied using ESI-MS. The porosity of each type of spraying tip was characterized by scanning electron microscopy (SEM). Factors governing the detection sensitivity were determined based on the correlation of the detection sensitivity to the ESI onset voltage, the polarity, and the porosity of the spraying tip materials. RESULTS: Hydrophobic tips (i.e., polyester and polyethylene) show better detection sensitivity for polar compounds but not for non-polar compounds, while hydrophilic tips (wooden tips) show the opposite effect. This phenomenon could be due to the difference in interaction between the analytes and the tips, causing the analytes to adsorb on the tip to different extents. In addition, the micro-porous nature of the tips could facilitate solvent diffusion for transporting analytes to the tip and maintain a stable spray for recording MS data. With the proper choice of spraying tip materials, trace amount of analytes at the picomole level can be detected with minimal sample pretreatment. CONCLUSIONS: Both the polarity and the porosity of the spraying tip materials could significantly affect detection sensitivity for a wide variety of analytes. With proper choice of spraying tip material, ESI on a porous spraying tip could be a sensitive method for the direct analysis of daily life samples.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Diffusion , Humans , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Polyesters/chemistry , Polyethylene/chemistry , Porosity , Protoporphyria, Erythropoietic/blood , Protoporphyrins/blood , Wood/chemistry
9.
Rapid Commun Mass Spectrom ; 25(19): 2837-43, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21913262

ABSTRACT

Tissue-spray ionization mass spectrometry is developed for the in situ chemical analysis of raw herbs under ambient conditions. We demonstrated that analyte molecules could be directly sprayed and ionized from solvent-wetted ginseng tissues upon the application of high electrical voltage to the tissue sample. Abundant phytochemicals/ metabolites, including ginsenosides, amino acids and oligosaccharides, could be detected from ginseng tissues when the tissue-spray experiments were conducted in positive ion mode. Thermally labile and easily hydrolyzed malonyl-ginsenosides were also detected in negative ion mode. The tissue-spray ionization method enables the direct detection of analytes from raw herb samples and preserves the sample integrity for subsequent morphological and/ or microscopic examination. In addition, this method is simple and fast for chemical profiling of wild-type and cultivated-type American ginsengs with differentiation.


Subject(s)
Panax/chemistry , Plants, Medicinal/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acids/analysis , Electricity , Ginsenosides/analysis , Microscopy, Electron, Scanning , Oligosaccharides/analysis , Panax/classification , Plant Roots/chemistry , Plants, Medicinal/classification , Statistics, Nonparametric
10.
Rapid Commun Mass Spectrom ; 25(24): 3690-6, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22468326

ABSTRACT

Gold nanoparticles (AuNPs) were applied and optimized as matrix for matrix-assisted laser desorption/ionization mass spectrometry analysis of animal tissues, and enabled histological analysis of animal tissues at molecular level by imaging mass spectrometry (IMS). AuNPs were coated on animal tissue in a solvent-free manner via argon ion sputtering. Metabolites, including neurotransmitters, fatty acids and nucleobases, were directly detected from mouse brain tissue. Based on region-specific chemical profiles, fine histological features of mouse brain tissue and heterogeneous regions of tumor tissue were both revealed.


Subject(s)
Gold/chemistry , Histocytochemistry/methods , Metal Nanoparticles/chemistry , Molecular Imaging/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Argon , Brain/anatomy & histology , Brain Chemistry , Brain Neoplasms/chemistry , Female , Mice
11.
Anal Chem ; 83(1): 453-8, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21117626

ABSTRACT

Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.


Subject(s)
Documentation , Forensic Sciences/methods , Gold/chemistry , Lasers , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Coloring Agents/chemistry , Handwriting , Ink
12.
Anal Chem ; 82(5): 1589-93, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20128591

ABSTRACT

Latent fingerprint (LFP) detection is a top-priority task in forensic science. It is a simple and effective means for the identification of individuals. Development of nanomaterials which maximize the surface interaction with endogenous substances on the ridges to enhance the contrast of the fingerprints is an important application of nanotechnology in LFP detection. However, most developments in this area have mainly focused on the visualization of the physical pattern of the fingerprints and failed to explore the molecular information embedded in LFPs. Here, we have integrated certain distinctive properties of gold nanoparticles (AuNPs) with imaging mass spectrometry for both the visualization and molecular imaging of LFPs. Two contrasting colors (blue and pink), arising from different surface plasmon resonance (SPR) bands of the AuNPs, reveal the optical images of LFPs. The laser desorption/ionization property of the AuNPs allows the direct analysis of endogenous and exogenous compounds embedded in LFPs and imaging their distributions without disturbing the fingerprint patterns. The simultaneous visualization of LFP and the recording of its molecular images not only provide evidence on individual identity but also resolve overlapping fingerprints and detect hazardous substances.


Subject(s)
Gold/chemistry , Metal Nanoparticles , Tandem Mass Spectrometry/methods , Humans , Male , Surface Plasmon Resonance
13.
Anal Chem ; 81(12): 4720-9, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19449861

ABSTRACT

Ion desorption efficiency and internal energy transfer were probed and correlated in carbon-based surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using benzylpyridinium (BP) salt as the thermometer chemical. In a SALDI-MS experiment with a N(2) laser (at 337 nm) used as the excitation light source and with multiwalled carbon nanotubes (CNT), buckminsterfullerene (C(60)), nanoporous graphitic carbon (PGC), non-porous graphite particles (G), highly oriented pyrolytic graphite (HOPG), or nanodiamonds (ND) as the SALDI substrate, both the desorption efficiency in terms of ion intensity of BP and the extent of internal energy transfer to the ions are dependent on the type and size of the carbon substrates. The desorption efficiency (CNT approximately C(60) > PGC > G > HOPG > ND) in general exhibits an opposite trend to the extent of internal energy transfer (CNT < C(60) approximately PGC < G approximately HOPG < ND), suggesting that increasing the extent of internal energy transfer in the SALDI process may not enhance the ion desorption efficiency. This phenomenon cannot be explained by a thermal desorption mechanism, and a non-thermal desorption mechanism is proposed to be involved in the SALDI process. The morphological change of the substrates after the laser irradiation and the high initial velocities of BP ions (1100-1400 ms(-1)) desorbed from the various carbon substrates suggest that phase transition/destruction of substrates is involved in the desorption process. Weaker bonding/interaction and/or a lower melting point of the carbon substrates favor the phase transition/destruction of the SALDI substrates upon laser irradiation, consequently affecting the ion desorption efficiency.


Subject(s)
Carbon/chemistry , Energy Transfer , Ions/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Adsorption , Graphite/chemistry , Ions/chemistry , Nanotubes, Carbon/chemistry , Pyridinium Compounds/analysis , Pyridinium Compounds/chemistry , Surface Properties
14.
Anal Chem ; 81(9): 3676-82, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19341248

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was applied to the direct analysis of melamine cyanurate (MC). The three commonly used MALDI matrixes, namely, alpha-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA), and 2,5-dihydroxybenzoic acid (DHB), were able to desorb/ionize melamine from MC upon N(2) laser irradiation, with CHCA showing the highest detection sensitivity in the positive mode. Only DHB and SA were able to desorb/ionize cyanuric acid from MC in the negative mode but with remarkably lower sensitivity. The method is able to detect melamine unambiguously from a small amount of MC (down to 12.5 microg) spiked into urine and was successfully applied for the rapid and sensitive detection of melamine in urine stones/residues of the samples collected from patients clinically confirmed of having kidney stones associated with the consumption of melamine-tainted food products. The urine matrix resulted in interfering ion peaks and suppressed the ion intensity of melamine, while a cleanup process consisting of simply washing with water eliminated such interference and enhanced the ion intensity. The merit of the method is simplicity in sample preparation. The analytical time of the method for high-throughput analysis from the time of sample treatment to analysis is less than 7 minutes per sample, with sensitive detection of the presence of melamine in the urine stones/residues of the patient samples.


Subject(s)
Triazines/urine , Child , Food Contamination , Humans , Kidney Calculi/etiology , Kidney Calculi/urine , Sensitivity and Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Triazines/analysis , Triazines/chemistry
15.
Anal Chem ; 79(7): 2745-55, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17313187

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was developed for spatial profiling of phytochemicals and secondary metabolites in integrated herbal tissue without solvent extraction. Abundant alkaloid ions, including (+)-menisperine (m/z 356), magnoflorine (m/z 342), stepharanine (m/z 324), protonated sinomenine (m/z 330), protonated sinomendine (m/z 338), and a metabolite at m/z 314, could be directly desorbed from alpha-cyano-4-hydroxycinnamic acid- (CHCA-) coated stem tissue of Sinomenium acutum upon N2 laser (337 nm) ablation, while the ion signals desorbed from sinapinic acid- (SA-) coated and 2,5-dihydroxybenzoic acid- (DHB-) coated stem tissue were at least 10 times weaker. Solvent composition in the matrix solution could have significant effects on the ion intensity of the metabolites. Under optimized conditions that maximize the ion intensity and form homogeneous matrix crystals on the tissue surface, spatial distributions of the metabolites localized in different tissue regions, including cortex, phloem, xylem, rim, and pith, and their relative abundances could be semiquantitatively determined. The three metabolites detected at m/z 356, 342, and 314 showed specific distributions in the herbal samples collected from different growing areas, while others were not. By applying principal component analysis (PCA), the characteristic metabolites in specific tissue regions could be easily determined, allowing unambiguous differentiation of the herbal samples from different geographic locations.


Subject(s)
Alkaloids/analysis , Drugs, Chinese Herbal/chemistry , Sinomenium/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Molecular Structure , Particle Size , Sensitivity and Specificity , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL