Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687237

ABSTRACT

This study investigates the effects of moisture content control on the characteristics, properties, and in vitro starch digestion of roasted rice powder made from natural high-resistant starch (RS) rice varieties. The results demonstrate that adjusting the moisture content before roasting significantly affects the RS content of the roasted rice powder. Among various moisture levels tested, the addition of 15% water (rice-to-water ratio of 85:15) before roasting resulted in the highest RS content, reaching 22.61%. Several key parameters of the rice samples before and after optimal moisture control were analyzed, including thermal stability, chain length distribution, volatile flavor composition, and scanning electron microscopy. Additionally, in vitro digestion properties were measured. The findings revealed that the volatile flavor compounds in the high-RS roasted rice significantly increased compared to non-roasted rice. Moreover, the thermal stability of the rice samples improved, and the chain length distribution exhibited significant changes. The water absorption and expansion properties were significantly lower in the high-RS roasted rice. Furthermore, the in vitro starch digestion of the roasted flour made from high-RS rice showed a significantly lower digestion rate compared to common rice, indicating a lower starch hydrolysis index in high-RS rice with the sbe-rs genotype. Overall, the roasting process of natural high-RS rice modifies its characteristics, increases the RS content, enhances the flavor, and results in a lower starch digestion rate compared to common rice. This study provides valuable data for the food industry to promote the application of high-RS rice varieties with mutations in the SBEIIb gene, such as Youtangdao2 (YTD2).


Subject(s)
Oryza , Resistant Starch , Starch , Oryza/genetics , Powders , Flour , Water
2.
Proc Assoc Inf Sci Technol ; 58(1): 875-877, 2021.
Article in English | MEDLINE | ID: mdl-34901409

ABSTRACT

The COVID-19 pandemic has led to the closure of schools around the world. When children study online, parents are concerned about the impact of increased screen time on their children's physical and mental health. This poster reports results from a qualitative study of Chinese preteens' Internet use and parental mediation during the COVID-19 pandemic. Through interviews with eight parents of primary school students aged from 10 to 12, we found several problems with preteens' Internet use, posing challenges for parental mediation. Parents have adopted stricter restrictive mediation strategies to reduce the impact of Internet addiction and implemented co-use strategies to help preteens adapt to online learning.

3.
Rice (N Y) ; 12(1): 70, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31502096

ABSTRACT

BACKGROUND: Rice blast caused by Magnaporthe oryzae is one of the most widespread biotic constraints that threaten rice production. Using major resistance genes for rice blast resistance improvement is considered to be an efficient and technically feasible approach to achieve optimal grain yield. RESULTS: We report here the introgression of the broad-spectrum blast resistance gene Pi2 into the genetic background of an elite PTGMS line, Feng39S, for enhancing it and its derived hybrid blast resistance through marker-assisted backcrossing (MABC) coupled with genomics-based background selection. Two PTGMS lines, designated as DB16206-34 and DB16206-38, stacking homozygous Pi2 were selected, and their genetic background had recurrent parent genome recovery of 99.67% detected by the SNP array RICE6K. DB16206-34 and DB16206-38 had high resistance frequency, with an average of 94.7%, when infected with 57 blast isolates over 2 years, and the resistance frequency of their derived hybrids ranged from 68.2% to 95.5% under inoculation of 22 blast isolates. The evaluation of results under natural blast epidemic field conditions showed that the selected PTGMS lines and their derived hybrids were resistant against leaf and neck blast. The characterizations of the critical temperature point of fertility-sterility alternation of the selected PTGMS lines, yield, main agronomic traits, and rice quality of the selected PTGMS lines and their hybrids were identical to those of the recurrent parent and its hybrids. DB16206-34/9311 or DB16206-38/9311 can be used as a blast-resistant version to replace the popular hybrid Fengliangyou 4. Likewise, DB16206-34/FXH No.1 or DB16206-38/FXH No.1 can also be used as a blast-resistant version to replace another popular hybrid Fengliangyou Xiang 1. CONCLUSIONS: Our evaluation is the first successful case to apply MABC with genomics-based background selection to improve the blast resistance of PTGMS lines for two-line hybrid rice breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...