Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Water Res ; 247: 120823, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37976623

ABSTRACT

In this study, N-doped Mn3O4 catalysts (Mn-nN) with electron-dense Mn sites were synthesized and employed in heterogeneous catalytic ozonation (HCO). These catalysts demonstrated excellent performance in pyrazines degradation and odor elimination. The synthesis of Mn-nN was achieved through a facile urea-assisted heat treatment method. Experimental characterization and theoretical analyses revealed that the MnN structures in Mn-nN, played a crucial role in facilitating the formation of electron-dense Mn sites that served as the primary active sites for ozone activation. In particular, Mn-1N exhibited excellent performance in the HCO system, demonstrating the highest 2,5-dimethylpyrazine (2,5-DMP) degradation efficiency. •OH was confirmed as the primary reactive oxygen species involved in the HCO process. The second-order rate constants for 2,5-DMP degradation with O3 and •OH, were determined to be (3.75 ± 0.018) × 10-1 and (6.29 ± 0.844) × 109 M-1 s-1, respectively. Seventeen intermediates were identified through GC-MS analysis during the degradation of 2,5-DMP via HCO process with Mn-1N. The degradation pathways were subsequently proposed by considering these identified intermediates. This study introduces a novel approach to synthesize N-doped Mn3O4 catalysts and demonstrates their efficacy in HCO for the degradation of pyrazines and the elimination of associated odors. The results show that the catalysts are promising for addressing odor-related environmental issues and provide valuable insights about the broader significance of catalytic ozonation processes.


Subject(s)
Ozone , Water Pollutants, Chemical , Odorants , Electrons , Reactive Oxygen Species , Ozone/chemistry , Catalysis , Water Pollutants, Chemical/chemistry
3.
BMC Vet Res ; 19(1): 11, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36647038

ABSTRACT

BACKGROUND: Peste des petits ruminants (PPR) disease is a cross-species infectious disease that severely affects small ruminants and causes great losses to livestock industries in various countries. Distinguishing vaccine-immunized animals from naturally infected animals is an important prerequisite for the eradication of PPR. At present PPRV are classified into lineages I through IV, and only one vaccination strain, Nigeria/75/1, belongs to lineage II, but all of the epidemic strains in China at present are from lineage IV. RESULTS: To achieve this goal, we developed an SYBR Green I real-time qRT-PCR method for rapid detection and identification of PPRV lineages II and IV by analyzing different melting curve analyses. The negative amplification of other commonly circulating viruses such as orf virus, goat poxvirus, and foot-and-mouth disease virus demonstrated that primers targeting the L gene of PPRV were extremely specific. The sensitivity of the assay was assessed based on plasmid DNA and the detection limit achieved was 100 copies of PPRV lineages II and IV. CONCLUSION: Since the method has high sensitivity, specificity, and reproducibility, it will be effectively differentiated PPRV lineages II from PPRV lineages IV in PPRV infected animals.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-petits-ruminants virus/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Reproducibility of Results , Peste-des-Petits-Ruminants/epidemiology , Ruminants , Goats , Goat Diseases/epidemiology
4.
Microbiol Spectr ; 10(5): e0103122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36036587

ABSTRACT

Peste des petits ruminants virus (PPRV) causes a highly contagious disease in small ruminants and severe economic losses in developing countries. PPRV infection can stimulate high levels of interferon (IFN) and many IFN-stimulated genes (ISGs), such as ISG15, which may play a key role in the process of viral infection. However, the role of ISG15 in PPRV infection and replication has not yet been reported. In this study, we found ISG15 expression to be significantly upregulated after PPRV infection of caprine endometrial epithelial cells (EECs), and ISG15 inhibits the proliferation of PPRV. Further analysis showed that free ISG15 could inhibit PPRV proliferation. Moreover, ISG15 does not affect the binding, entry, and transcription but does suppress the replication of PPRV. A detailed analysis revealed that ISG15 interacts and colocalizes with both viral N and P proteins and that its interactive regions are all located in the N-terminal domain. Further studies showed that ISG15 can competitively interact with N and P proteins and significantly interfere with their binding. Finally, through the construction of the C-terminal mutants of ISG15 with different lengths, it was found that amino acids (aa) 77 to 101 play a key role in inhibiting the binding of N and P proteins and that interaction with the P protein disappears after the deletion of 77 to 101 aa. The present study revealed a novel mechanism of ISG15 in disrupting the activity of the N0-P complex to inhibit viral replication. IMPORTANCE PPRV, a widespread and fatal disease of small ruminants, is one of the most devastating animal diseases in Africa, the Middle East, and Asia, causing severe economic losses. IFNs play an important role as a component of natural immunity against pathogens, yet the role of ISG15, an IFN-stimulated gene, in protecting against PPRV infection is currently unknown. We demonstrated, for the first time, that free ISG15 inhibits PPRV proliferation by disrupting the activity of the N0-P complex, a finding that has not been reported in other viruses. Our results provide important insights that can further understand the pathogenesis and innate immune mechanisms of PPRV.


Subject(s)
Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-petits-ruminants virus/genetics , Peste-des-Petits-Ruminants/metabolism , Nucleoproteins , Phosphoproteins , Goats , Interferons/genetics , Ruminants , Amino Acids
5.
Biomaterials ; 287: 121665, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35809403

ABSTRACT

The complexity of existing methods for biodegradation control limits the multi-functionality of biomedical materials. It is urgent to develop simple and straightforward strategies to control the biodegradation rate with precise tracking of various parameters in real-time. Here, we show an imaging moiety-directed co-assembly strategy, in which different imaging moieties bearing non-covalent interaction sites are covalently introduced into the poly (D,l-lactic acid) (PDLLA) chain as end groups, followed by alternate non-covalent interactions with polymer chains upon compression molding. This strategy takes advantage of a variety of bonding types (including CH-π, CH-F, etc.) to firmly integrate the PDLLA chains and strongly control the biodegradation rate, making the amorphous prototype degraded much slower than higher-molecular-weight counterparts, and the local inflammatory response is insignificant. On this basis, a synchronous four-modal (X-ray computed tomography + fluorescence + photoacoustics + ultrasound) imaging was achieved on the single entity in vivo, even within a millimeter-scale thick-skin tissue. These imaging signals can precisely correlate the multi parameter variation trend of material mass, volume and molecular weight, signifying that co-assembly can be utilized to develop advanced theranostic systems. SINGLE SENTENCE SUMMARY: We developed an imaging moiety-directed co-assembly strategy to control the biodegradation rate and achieve the synchronization of real-time four-modal imaging in vivo. These imaging signals can precisely correlate the multi-parameter variation trend of material mass, volume and molecular weight, which provided comprehensive biomedical information accessing both qualitatively and quantitatively.

6.
Biomater Sci ; 10(16): 4561-4575, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35791839

ABSTRACT

Organic polymers with condensed long chains show slow dissolution kinetics in solvents, particularly in water, which has significantly hindered their potential applications where their instant dissolution without any assistance of a stirring machine, etc. is required. Herein, we put forward a strategy of rapid dissolution of chain-like polymers by coordinating with small molecular additives, using a thermogellable amphiphilic copolymer and CaCl2 for demonstration. We synthesized a block copolymer of poly(ethylene glycol) (PEG) and poly(lactide-co-glycolide) (PLGA) and prepared its powder after coordinating with calcium ions. Compared to the virgin copolymer, the composite was dissolved in water at a rate of over 104 fold, and simple manual shaking for half a minute could form its aqueous solution. Chelation using sodium citrate was further suggested to alleviate the possible biocompatibility problem caused by calcium ions. Finally, the potential application of the thermogels prepared by the rapid dissolution strategy for an instant use in hospitals was demonstrated in an ex vivo porcine model of a fluid cushion for endoscopic submucosal dissection. The mechanism was discussed, and the critical factor comes from the coordination between calcium ions and the PEG block in the copolymer. The strategy to introduce a solvable small molecular additive coordinated with the polymer chain at the molecular level is helpful for accelerating the dissolution of organic polymers in a solvent to a large extent.


Subject(s)
Polymers , Water , Animals , Calcium , Polyethylene Glycols , Solubility , Solvents , Swine
7.
Front Cell Infect Microbiol ; 12: 874936, 2022.
Article in English | MEDLINE | ID: mdl-35711660

ABSTRACT

Peste des petits ruminants (PPR) is an acute and highly pathogenic infectious disease caused by peste des petits ruminants virus (PPRV), which can infect goats and sheep and poses a major threat to the small ruminants industry. The innate immune response plays an important role as a line of defense against the virus. The effect of PPRV on the active innate immune response has been described in several studies, with different conclusions. We infected three goat-derived cell lines with PPRV and tested their innate immune response. PPRV proliferated in caprine endometrial epithelial cells (EECs), caprine skin fibroblasts cells (GSFs), and goat fibroblast cells (GFs), and all cells expressed interferon (IFN) by poly (I: C) stimulation. PPRV infection stimulated expression of type I and type III IFN on EECs, and expression of the latter was significantly stronger, but IFN was not stimulated in fibroblasts (GSFs and GFs). Our results suggested that the effect of PPRV on IFN was cell-type specific. Nine IFN-stimulated genes (ISGs) were detected in EECs, but only ISG15 and RSAD2 were significantly upregulated. The effects of PPRV on IFN and IFN-induced ISGs were cell-type specific, which advances our understanding of the innate immune response induced by PPRV and creates new possibilities for the control of PPRV infection.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Antiviral Agents/pharmacology , Goats/genetics , Immunity, Innate , Interferons/pharmacology , Peste-des-Petits-Ruminants/genetics , Peste-des-petits-ruminants virus/genetics , Sheep
9.
ACS Appl Mater Interfaces ; 14(21): 24197-24212, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35580332

ABSTRACT

Enabling a biodegradable polymer radiopaque under X-ray is much desired for many medical devices. Physical blending of a present biodegradable polymer and a commercialized medical contrast agent is convenient yet lacks comprehensive fundamental research. Herein, we prepared a biodegradable polymer-based radiopaque raw material by blending poly(l-lactic acid) (PLLA or simply PLA) and iohexol (IHX), where PLA constituted the continuous phase and IHX particles served as the dispersed phase. The strong X-ray adsorption of IHX enabled the composite radiopaque; the hydrolysis of the polyester and the water solubility of the contrast agent enabled the composite biodegradable in an aqueous medium. The idea was confirmed by in vitro characterizations of the resultant composite, in vivo subcutaneous implantation in rats up to 6 months, and the clear visualization of a part of a biodegradable occluder in a Bama piglet under X-ray. We also found that the crystallization of PLA was significantly enhanced in the presence of the solid particles, which should be taken into consideration in the design of an appropriate biomaterial composite because crystallization degree influences the biodegradation rate and mechanical property of a material to a large extent. We further tried to introduce a small amount of poly(vinylpyrrolidone) into the blend of PLA and IHX. Compared to the bicomponent composite, the tricomponent one exhibited decreased modulus and increased elongation at break and tensile strength. This paves more ways for researchers to select appropriate raw materials according to the regenerated tissue and the application site.


Subject(s)
Contrast Media , Polyesters , Animals , Biocompatible Materials/chemistry , Crystallization , Polyesters/chemistry , Polymers/chemistry , Rats , Swine
10.
Virol Sin ; 37(1): 48-59, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35234629

ABSTRACT

Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family and cannot be propagated in vitro, which has impeded the progress of investigating its replication mechanism. Construction of an RHDV replicon system has recently provided a platform for exploring RHDV replication in host cells. Here, aided by this replicon system and using two-step affinity purification, we purified the RHDV replicase and identified its associated host factors. We identified rabbit nucleolin (NCL) as a physical link, which mediating the interaction between other RNA-dependent RNA polymerase (RdRp)-related host proteins and the viral replicase RdRp. We found that the overexpression or knockdown of NCL significantly increased or severely impaired RHDV replication in RK-13 â€‹cells, respectively. NCL was identified to directly interact with RHDV RdRp, p16, and p23. Furthermore, NCL knockdown severely impaired the binding of RdRp to RdRp-related host factors. Collectively, these results indicate that the host protein NCL is essential for RHDV replication and acts as a physical link between viral replicase and host proteins.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Hemorrhagic Disease Virus, Rabbit/chemistry , Hemorrhagic Disease Virus, Rabbit/genetics , Hemorrhagic Disease Virus, Rabbit/metabolism , Humans , Phosphoproteins , RNA-Binding Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Virus Replication , Nucleolin
11.
Adv Healthc Mater ; 11(12): e2102654, 2022 06.
Article in English | MEDLINE | ID: mdl-35286021

ABSTRACT

Traditional skin care masks usually use a piece of paper to hold the aqueous essences, which are not environmentally friendly and not easy to use. While a paper-free mask is desired, it is faced with a dilemma of moisture holding and rapid release of encapsulated bioactive substances. Herein, a paper-free sprayable skin mask is designed from an intelligent material-a thermogel which undergoes sol-gel-suspension transitions upon heating-to solve this dilemma. A synthesized block copolymer of poly(ethylene glycol) and poly(lactide-co-glycolide) with appropriate ratios can be dissolved in water, and thus easily mixed with a biological substance. The mixture is sprayable. After spraying, a Janus film is formed in situ with a physical gel on the outside and a suspension on the inside facing skin. Thus, both moisture holding and rapid release are achieved. Such a thermogel composed of biodegradable amphiphilic block copolymers loaded with nicotinamide as a skin mask is verified to reduce pigmentation on a 3D pigmented reconstructed epidermis model and further in a clinical study. This work might be stimulating for investigations and applications of biodegradable and intelligent soft matter in the fields of drug delivery and regenerative medicine.


Subject(s)
Hydrogels , Polymers , Drug Delivery Systems , Polyethylene Glycols , Regenerative Medicine
12.
Vet Microbiol ; 260: 109163, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311269

ABSTRACT

Small ruminant morbillivirus (SRMV) is a highly contagious and economically important viral disease of small domestic and wild ruminants. Difficulty with its stable proliferation in ovis aries-derived cells has led to a relative lag in the study of its natural immunity and pathogenesis. Here we report the antiviral properties of ZAP against SRMV, a single-stranded negative-stranded RNA virus of the genus Morbillivirus. ZAP expression was significantly induced in sheep endometrial epithelial cells following SRMV infection. ZAP inhibited SRMV replication in cells after infection, while its overexpression in Vero-SLAM cells significantly increased their resistance to SRMV replication. The ZAP protein co-localized with SRMV RNA in the cytoplasm and ZAP-responsive elements were mapped to the 5' untranslated region of SRMV nucleocapsid, phosphoprotein, matrix, and fusion. In summary, ZAP confers resistance to SRMV infection by directly targeting viral RNA and inhibiting viral replication. Our findings further extend the ranges of viral targets of ZAP and help elucidate the mechanism of SRMV replication.


Subject(s)
Morbillivirus Infections/veterinary , Morbillivirus/physiology , RNA-Binding Proteins/metabolism , Animals , Chlorocebus aethiops , Endometrium/virology , Epithelial Cells/virology , Female , HEK293 Cells , Humans , Morbillivirus Infections/virology , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Sheep , Vero Cells , Virus Replication
13.
Biomater Sci ; 9(15): 5192-5208, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34159966

ABSTRACT

Percutaneous or transcutaneous devices are important and unique, and the corresponding biological sealing at the skin-implant interface is the key to their long-term success. Herein, we investigated the surface modification to enhance biological sealing, using a metal sheet and screw bonded by biomacromolecule fibrinogen mediated via pre-deposited synthetic macromolecule polydopamine (PDA) as a demonstration. We examined the effects of a Ti-6Al-4V titanium alloy modified with fibrinogen (Ti-Fg), PDA (Ti-PDA) or their combination (Ti-PDA-Fg) on the biological sealing and integration with skin and bone tissues. Human epidermal keratinocytes (HaCaT), human foreskin fibroblasts (HFF) and preosteoblasts (MC3T3-E1), which are closely related to percutaneous implants, exhibited better adhesion and spreading on all the three modified sheets compared with the unmodified alloy. After three-week subcutaneous implantation in Sprague-Dawley (SD) rats, the Ti-PDA-Fg sheets could significantly attenuate the soft tissue response and promote angiogenesis compared with other groups. Furthermore, in the model of percutaneous tibial implantation in SD rats, the Ti-PDA-Fg screws dramatically inhibited epithelial downgrowth and promoted new bone formation. Hence, the covalent immobilization of fibrinogen through the precoating of PDA is promising for enhanced biological sealing and osseointegration of metal implants with soft and hard tissues, which is critical for an orthopedic percutaneous medical device.


Subject(s)
Alloys , Titanium , Animals , Fibrinogen , Osseointegration , Rats , Rats, Sprague-Dawley , Surface Properties
14.
ACS Appl Mater Interfaces ; 13(17): 19778-19792, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33881817

ABSTRACT

Endoscopic submucosal dissection is an established method for the removal of early cancers and large lesions from the gastrointestinal tract but is faced with the risk of perforation. To decrease this risk, a submucosal fluid cushion (SFC) is needed clinically by submucosal injection of saline and so on to lift and separate the lesion from the muscular layer. Some materials have been tried as the SFC so far with disadvantages. Here, we proposed a thermogel generated by the "block blend" strategy as an SFC. This system was composed of two amphiphilic block copolymers in water, so it was called a "block blend". We synthesized two non-thermogellable copolymers poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) and blended them in water to achieve a sol-gel transition upon heating in both pure water and physiological saline. We explored the internal structure of the resultant thermogel with transmission electron microscopy, three-dimensional light scattering, 13C NMR, fluorescence resonance energy transfer, and rheological measurements, which indicated a percolated micelle network. The biosafety of the synthesized copolymer was preliminarily confirmed in vitro. The main necessary functions as an SFC, namely, injectability of a sol and the maintained mucosal elevation as a gel after injection, were verified ex vivo. This study has revealed the internal structure of the block blend thermogel and illustrated its potential application as a biomaterial. This work might be stimulating for investigations and applications of intelligent materials with both injectability and thermogellability of tunable phase-transition temperatures.


Subject(s)
Biocompatible Materials , Endoscopy/instrumentation , Gels/chemistry , Mucous Membrane/surgery , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Fluorescence Resonance Energy Transfer , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Phase Transition , Rheology , Swine
15.
Carbohydr Polym ; 239: 116246, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32414454

ABSTRACT

A novel design of bioreactor G-BNC, in combination with two previously reported designs of bioreactor were used to fabricate three small caliber bacterial nanocellulose (BNC) conduits (G-BNC, S-BNC and D-BNC). They were compared systematically with a clinically-used ePTFE graft. S-BNC possessed a laminated structure, the lowest BNC content, roughest luminal surface and weakest mechanical properties, and so might not be sufficiently strong for use as an artificial blood vessel alone. The D-BNC conduit possessed an unstratified structure with a fiber network that was more dense and the greatest BNC content, providing the strongest mechanical properties. G-BNC possessed a looser network with the smoothest luminal surface and greater hemocompatibility. Following comprehensive evaluation of mechanical properties and performance, we judge that D-BNC and G-BNC should possess greater potential in application as small caliber vascular grafts, however the patency of the three BNC conduits need be further verified in animal studies in vivo.


Subject(s)
Biocompatible Materials/chemistry , Bioreactors , Blood Vessel Prosthesis , Cellulose/chemistry , Gluconacetobacter xylinus/chemistry , Nanostructures/chemistry , Animals , Chemistry, Physical , Rabbits
16.
Vet Microbiol ; 240: 108529, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31902498

ABSTRACT

Rabbit hemorrhagic disease (RHD) is an acute, inflammatory, septic, and devastating infectious disease caused by Rabbit hemorrhagic disease virus (RHDV), which poses a serious threat to the rabbit industry. RHDV2 (GI.2/RHDVb), a recently reported new variant could cause RHD in wild populations, but also RHDV-vaccinated rabbits. For now, both RHDV and RHDV2 are the main causes of RHD. To develop a new subunit vaccine that could protect rabbits against both classic RHDV and RHDV2 infections, we constructed a recombinant baculovirus (Bac-classic RHDV VP60-RHDV2 VP60) containing the VP60 genes of classic RHDV and RHDV2. Both VP60 genes were well expressed simultaneously in Spodoptera frugiperda cells (Sf9) after infection with the recombinant baculovirus. Transmission electron microscopy showed that the recombinant VP60 self-assembled into virus-like particles (VLPs). The antigenicity and immunogenicity of the bivalent VLPs vaccine were examined with animal experiments. Our results demonstrated that both the humoral and cellular immune responses were efficiently induced in rabbits by a subunit vaccine based on the recombinant baculovirus. In addition, all rabbits immunized with the bivalent VLPs vaccine survived after challenged with classic RHDV, and showed no clinical signs of RHD, whereas all the rabbits in the negative control group died from classic RHDV infection and showed typical clinical signs of RHD. In summary, our results indicated that the recombinant baculovirus carrying two VP60 genes is a candidate construct from which to develop a bivalent VLPs vaccine against both classic RHDV and RHDV2 infections.


Subject(s)
Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/immunology , Vaccines, Virus-Like Particle/immunology , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Baculoviridae , Caliciviridae Infections/prevention & control , Cytokines/immunology , Female , Hemorrhagic Disease Virus, Rabbit/genetics , Immunity, Cellular , Immunity, Humoral , Male , Rabbits , Sf9 Cells , Specific Pathogen-Free Organisms , Spodoptera , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Vaccines/genetics
17.
Sensors (Basel) ; 19(23)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31805632

ABSTRACT

This paper presents a cognitive satellite communication based wireless sensor network, which combines the wireless sensor network and the cognitive satellite terrestrial network. To address the conflict between the continuously increasing demand and the spectrum scarcity in the space network, the cognitive satellite terrestrial network becomes a promising candidate for future hybrid wireless networks. With the higher transmit capacity demand in satellite networks, explicit concerns on efficient resource allocation in the cognitive network have gained more attention. In this background, we propose a sensing-based dynamic spectrum sharing scheme for the cognitive satellite user, which is able to maximize the ergodic capacity of the satellite user with the interference of the primary terrestrial user below an acceptable average level. Firstly, the cognitive satellite user monitors the channel allocated to the terrestrial user through the wireless sensor network; then, it adjusts the transmit power based on the sensing results. If a terrestrial user is busy, the satellite user can access the channel with constrained power to avoid deteriorating the communication quality of the terrestrial user. Otherwise, if the terrestrial user is idle, the satellite user allocates the transmit power based on its benefit to enhance the capacity. Since the sensing-based dynamic spectrum sharing optimization problem can be modified into a nonlinear fraction programming problem in perfect/imperfect sensing conditions, respectively, we solve them by the Lagrange duality method. Computer simulations have shown that, compared with the opportunistic spectrum access, the proposed method can increase the channel capacity more than 20 % for P a v = 10 dB in a perfect sensing scenario. In an imperfect sensing scenario, P a v = 15 dB and Q a v = 5 dB, the optimal sensing time achieving the highest ergodic capacity is about 2.34 ms when the frame duration is 10 ms.

18.
Infect Genet Evol ; 73: 242-247, 2019 09.
Article in English | MEDLINE | ID: mdl-31077840

ABSTRACT

The variability and the intrinsically high mutation rate of canine parvovirus type 2(CPV-2) increased the diversity of CPV-2 in canine populations. Since the first occurrence of CPV-2, three antigenic variants (2a, 2b and 2c) were detected and distributed worldwide. CPV-2c infection has been detected and increasingly reported in China. Here, a CPV-2c strain CPV-SH1516 was isolated and its complete genome sequence was first characterized. Compared with other CPV-2c isolates, CPV-2c isolates from China continued to evolve into divergent CPV-2c variants with specific unique amino acid substitutions under purifying selection. Emergence of CPV-2c isolates from China was driven by the unique gradual point mutations in key sites of VP2 rather than introduction from outside China. Combining sequence comparison with phylogenetic analysis based on the amino acid sequences of VP2, the vast majority of CPV-2c isolates from China formed a monophyletic cluster and CPV-SH1516 was a representative isolate of CPV-2c circulating in China. Overall, our study provides valuable insight into the evolutionary mechanism of CPV-2c.


Subject(s)
Dog Diseases/virology , Parvoviridae Infections/veterinary , Parvovirus, Canine/classification , Animals , China/epidemiology , Dog Diseases/epidemiology , Dogs , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Parvovirus, Canine/genetics
19.
Biofabrication ; 11(3): 035009, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30865936

ABSTRACT

While various porous scaffolds have been developed, the focused study about which structure leads to better mechanics is rare. In this study, we designed porous scaffolds with tetragonal, hexagonal and wheel-like structures under a given porosity, and fabricated corresponding poly(lactic acid) (PLA) scaffolds with three-dimensional printing. High-resolution micro-computed tomography was carried out to calculate their experimental porosity and confirm their high interconnectivity. The theoretical and experimental compressive properties in the longitudinal direction were characterized by finite element analysis method and electromechanical universal testing system, respectively. Thereinto, the scaffold with the tetragonal structure exhibited higher mechanical strength both theoretically and experimentally. Creep and stress relaxation behaviors of the scaffolds revealed that the tetragonal scaffold had less significant viscoelasticity. Immersion dynamic mechanical analysis was performed to test their cycle-loading fatigue behaviors in the simulated body fluid at 37 °C; the tetragonal scaffold exhibited the latest fatigue beginning point at 4400 cycles, which indicated a better anti-fatigue performance; the hexagonal and wheel-like ones exhibited the middle and earliest fatigue beginning points at 3200 and 2500 cycles, respectively. What is more, cytocompatibility and histocompatibility of the scaffolds with all of the structures were confirmed by cell counting kit-8 assay in vitro and three-month subcutaneous implantation in rats in vivo. Hence, the key property difference of the three examined structures comes from their mechanics; the tetragonal structure exhibited better mechanics in the longitudinal direction examined in this study, which could be taken into consideration in design of a porous scaffold for tissue engineering and regeneration.


Subject(s)
Polyesters/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Animals, Newborn , Compressive Strength , Elasticity , Models, Animal , Prosthesis Implantation , Rats, Sprague-Dawley , Stress, Mechanical , Subcutaneous Tissue/physiology , Viscosity , X-Ray Microtomography
20.
J Vet Med Sci ; 81(2): 314-320, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30584200

ABSTRACT

Duck Tembusu virus disease, caused by the duck Tembusu virus (DTMUV), can lead to a severe reduction in egg production and growth retardation in laying ducks and ducklings, respectively. In this study, we engineered a novel recombinant adenovirus expressing the E protein of DTMUV (rAd-E) in AAV-293 cells (analyzed by western blot and indirect immunofluorescence assays). Intramuscular immunization of Cherry Valley ducks with rAd-E was performed to evaluate host cellular and humoral immune responses. Compared to the phosphate-buffered saline administered group and the negative control wild-type adenovirus (wtAd) group, the rAd-E vaccinated group showed increased cellular and humoral responses. The results from the cytokine release and lymphocyte proliferation assays showed that rAd-E induced a stronger cellular immune response than the control group (P<0.01), 4 weeks after primary immunization. The results of enzyme-linked immunosorbent and virus neutralization assays showed that rAd-E induced higher titers of specific neutralizing antibodies, 2 weeks after primary immunization. The DTMUV challenge experiment showed a higher survival rate (80%) of ducks in the rAd-E group, when challenged with 0.5 ml (ELD50=10-2.67/0.2 ml) of the DTMUV strain AH-F10. These results indicate that rAd-E effectively protects ducks against DTMUV infection. Therefore, rAd-E could be a vaccine candidate to provide an effective and safe method for prevention and control of DTMUV infection.


Subject(s)
Adenoviridae/immunology , Ducks/virology , Flavivirus Infections/veterinary , Flavivirus/immunology , Poultry Diseases/virology , Vaccines, Synthetic/genetics , Viral Vaccines/genetics , Adenoviridae/genetics , Animals , Blotting, Western/veterinary , Ducks/immunology , Flavivirus Infections/immunology , Flavivirus Infections/virology , Fluorescent Antibody Technique/veterinary , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Neutralization Tests/veterinary , Poultry Diseases/immunology , Poultry Diseases/prevention & control , Vaccines, Synthetic/immunology , Vaccines, Synthetic/virology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...