Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 253: 118926, 2022 06.
Article in English | MEDLINE | ID: mdl-35066158

ABSTRACT

Recent studies have emphasized the changes in large-scale brain networks related to healthy aging, with the ultimate purpose to aid in differentiating normal neurocognitive aging from neurodegenerative disorders that also arise with age. Emerging evidence from functional Magnetic Resonance Imaging (fMRI) indicates that connectivity patterns within specific brain networks, especially the Default Mode Network (DMN), distinguish those with Alzheimer's disease from healthy individuals. In addition, disruptive alterations in the large-scale brain systems that support high-level cognition are shown to accompany cognitive decline at the behavioral level, which is commonly observed in the aging populations, even in the absence of disease. Although fMRI is useful for assessing functional changes in brain networks, its high costs and limited accessibility discourage studies that need large populations. In this study, we investigated the aging-effect on large-scale networks of the human brain using high-density electroencephalography and electrophysiological source imaging, which is a less costly and more accessible alternative to fMRI. In particular, our study examined a group of healthy subjects in the age range from middle- to older-aged adults, which is an under-studied range in the literature. Employing a high-resolution computation model, our results revealed age associations in the connectivity pattern of DMN in a consistent manner with previous fMRI findings. Particularly, in combination with a standard battery of cognitive tests, our data showed that in the posterior cingulate / precuneus area of DMN higher brain connectivity was associated with lower performance on an episodic memory task. The findings demonstrate the feasibility of using electrophysiological imaging to characterize large-scale brain networks and suggest that changes in network connectivity are associated with normal aging.


Subject(s)
Healthy Aging , Memory, Episodic , Adult , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging , Middle Aged , Nerve Net/diagnostic imaging , Neural Pathways/physiology
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1931-1934, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440776

ABSTRACT

Multimodal neuroimaging, such as combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), are being increasingly used to investigate the human brain in healthy and diseased conditions. However, certain neuroimaging data are typically acquired in different body positions, e.g., supine fMRI and upright EEG, overlooking the effect of body position on signal characteristics. In the current study we examined EEG signals in three different positions, i.e., supine, standing and sitting, in patients with a balance disorder called mal de debarquement syndrome (MdDS). Individuals with MdDS experience a chronic illusion of self-motion triggered by prolonged exposure to passive motion, such as from sea or air travel. The degree of perception of rocking dizziness is modulated by body position, suggesting a physiological effect related to body positions. In the present study, EEG features were quantified as peak frequency, peak amplitude, and average amplitude of the alpha band due to its strongest signal characteristics compared to other frequencies. The effect of body position was examined in EEG features from data acquired before and after the individuals received treatment with repetitive transcranial magnetic stimulation. Our results indicate a significant effect of body positions on the EEG signals in MdDS.


Subject(s)
Electroencephalography , Motion Sickness , Travel-Related Illness , Humans , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Travel
SELECTION OF CITATIONS
SEARCH DETAIL
...