Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 66(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34700308

ABSTRACT

This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Particle Accelerators , Phantoms, Imaging , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Water
2.
Phys Med Biol ; 66(6): 065021, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33607641

ABSTRACT

Bolus is commonly used in MV photon radiotherapy to increase superficial dose and improve dose uniformity for treating shallow lesions. However, irregular patient body contours can cause unwanted air gaps between a bolus and patient skin. The resulting dosimetric errors could be exacerbated in MR-Linac treatments, as secondary electrons generated by photons are affected by the magnetic field. This study aimed to quantify the dosimetric effect of unwanted gaps between bolus and skin surface in an MR-Linac. A parallel-plate ionization chamber and EBT3 films were utilized to evaluate the surface dose under bolus with various gantry angles, field sizes, and different air gaps. The results of surface dose measurements were then compared to Monaco 5.40 Treatment Planning System (TPS) calculations. The suitability of using a parallel-plate chamber in MR-Linac measurement was validated by benchmarking the percentage depth dose and output factors with the microDiamond detector and air-filled ionization chamber measurements in water. A non-symmetric response of the parallel-plate chamber to oblique beams in the magnetic field was characterized. Unwanted air gaps significantly reduced the skin dose. For a frontal beam, skin dose was halved when there was a 5 mm gap, a much larger difference than in a conventional linac. Skin dose manifested a non-symmetric pattern in terms of gantry angle and gap size. The TPS overestimated skin dose in general, but shared the same trend with measurement when there was no air gap, or the gap size was larger than 5 mm. However, the calculated and measured results had a large discrepancy when the bolus-skin gap was below 5 mm. When treating superficial lesions, unwanted air gaps under the bolus will compromise the dosimetric goals. Our results highlight the importance of avoiding air gaps between bolus and skin when treating superficial lesions using an MR-Linac system.


Subject(s)
Air , Magnetic Resonance Imaging/methods , Particle Accelerators , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Skin/radiation effects , Benchmarking , Electrons , Humans , Ions , Magnetic Fields , Phantoms, Imaging , Radiotherapy Dosage , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...