Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37299707

ABSTRACT

3D printing technology has been used to directly produce various actual products, ranging from engines and medicines to toys, especially due to its advantage in producing items of complicated, porous structures, which are inherently difficult to clean. Here, we apply micro-/nano-bubble technology to the removal of oil contaminants from 3D-printed polymeric products. Micro-/nano-bubbles show promise in the enhancement of cleaning performance with or without ultrasound, which is attributed to their large specific surface area enhancing the adhesion sites of contaminants, and their high Zeta potential which attracts contaminant particles. Additionally, bubbles produce tiny jets and shock waves at their rupture, driven by coupled ultrasound, which can remove sticky contaminants from 3D-printed products. As an effective, efficient, and environmentally friendly cleaning method, micro-/nano-bubbles can be used in a range of applications.

2.
HERD ; 16(4): 36-55, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37162134

ABSTRACT

OBJECTIVES: Serious COVID-19 nosocomial infection has demonstrated a need to design our health services in a different manner. Triggered by the current crisis and the interest in rapid deployable hospital, this article discusses how hospital building layouts can be improved to streamline the patient pathways and thus to reduce the risk of hospital-related infections. Another objective of this work is to explore the possibility to develop flexible and scalable hospital building layouts through modular construction. This enables hospitals to better cope with different future demands and thereby enhance the resilience of the healthcare facilities. BACKGROUND: During the first wave of COVID-19, approximate one-seventh to one-fifth COVID-19 patients and majority of infected healthcare workers acquired the disease in NHS hospitals. Similar issues emerged during the Crimean War (1853-1856) when more soldiers died from infectious diseases rather than of battlefield casualties in Scutari Hospital. This led to an important collaborative work between Florence Nightingale, who looked into this problem statistically, and Isambard Kingdom Brunel, who designed the rapid deployment Renkioi Hospital which yielded a death rate 90% lower than that in Scutari Hospital. While contemporary medical research and practice have moved beyond Nightingale's concept of contagion, challenges of optimizing hospital building layouts to support healing and effectively combat nosocomial infections still pose elusive problems that require further investigation. METHODS: Through case study investigations, this article evaluates the risk of nosocomial infections of airborne transmissions under different building layouts, and this provides essential data for infection control in the new-build or refurbished healthcare projects. RESULTS: Improved hospital layout can be achieved through reconfiguration of rooms and concourse. Design interventions through evidence-based infection risk analysis can reduce congestion and provide extra separation and compartmentalization which will contribute the reduced nosocomial infection rate. CONCLUSIONS: A resilient hospital shall be able to cope with unexpected circumstances and be flexible to change when new challenges arise, without compromising the safety and well-being of frontline medical staff and other patients. Such an organizational resilience depends on not only flexible clinical protocols but also flexible hospital building layouts. The latter allows hospitals to get better prepared for rapidly changing patient expectations, medical advances, and extreme weather events. The reconfigurability of an existing healthcare facility can be further enhanced through modular construction, standardization of building components, and additional space considered.


Subject(s)
COVID-19 , Cross Infection , Hospital Design and Construction , Humans , COVID-19/epidemiology , Crimean War , Infection Control , Cross Infection/epidemiology , Cross Infection/prevention & control
3.
ACS Appl Mater Interfaces ; 12(45): 50377-50387, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33119276

ABSTRACT

Transition-metal sulfides are key cathode materials for thermal batteries used in military applications. However, it is still a big challenge to prepare sulfides with good electronic conductivity and thermal stability. Herein, we rapidly synthesized a Co-doped NiS2 micro/nanostructure using a hydrothermal method. We found that the specific capacity of the Ni1-xCoxS2 micro/nanostructure increases with the amount of Co doping. Under a current density of 100 mA cm-2, the specific capacity of Ni0.5Co0.5S2 was about 1565.2 As g-1 (434.8 mAh g-1) with a cutoff voltage of 1.5 V. Owing to the small polarization impedance (5 mΩ), the pulse voltage reaches about 1.74 V under a pulse current of 2.5 A cm-2, 30 ms. Additionally, the discharge mechanism was proposed by analyzing the discharge product according to the anionic redox chemistry. Furthermore, a 3.9 kg full thermal battery is assembled based on the synthesized Ni0.5Co0.5S2 cathode materials. Notably, the full thermal battery discharges at a current density of 100 mA cm-2, with an operating time of about 4000 s, enabling a high specific energy density of around 142.5 Wh kg-1. In summary, this work presents an effective cathode material for thermal battery with high specific energy and long operating life.

4.
Carbohydr Polym ; 166: 256-263, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28385231

ABSTRACT

The molecular dynamics (MD) simulation method was used to investigate the hydrogen bonding energy of starch/glycerol system under different temperatures (range from 90°C to 120°C) and different glycerol contents (range from 20% to 40%, based on dry starch weight). These effects on the hydrogen bonding energy (including the total hydrogen bonding energy, hydrogen bonding energy of starch/starch, glycerol/glycerol, and starch/glycerol) were analyzed in detail. Meanwhile, glycerol plasticized starch films were prepared using casting method. The relationship between the hydrogen bonding energy and the performances of thermoplastic starch film (TPSF), such as crystallinity, mechanical properties and water uptake determined experimentally, were revealed and discussed. The results indicated that glycerol/starch film contained strong hydrogen bonding interaction which could be increased by decreasing the temperature or increasing the glycerol content. The hydrogen bonding interaction is the key factor for the preparation of the plasticized starch material, and the plasticized mechanism can be interpreted according to the analytical results of the simulation.

SELECTION OF CITATIONS
SEARCH DETAIL