Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 78(2): 269-276, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37874928

ABSTRACT

BACKGROUND: Emerging resistance to bedaquiline (BDQ) threatens to undermine advances in the treatment of drug-resistant tuberculosis (DRTB). Characterizing serial Mycobacterium tuberculosis (Mtb) isolates collected during BDQ-based treatment can provide insights into the etiologies of BDQ resistance in this important group of DRTB patients. METHODS: We measured mycobacteria growth indicator tube (MGIT)-based BDQ minimum inhibitory concentrations (MICs) of Mtb isolates collected from 195 individuals with no prior BDQ exposure who were receiving BDQ-based treatment for DRTB. We conducted whole-genome sequencing on serial Mtb isolates from all participants who had any isolate with a BDQ MIC >1 collected before or after starting treatment (95 total Mtb isolates from 24 participants). RESULTS: Sixteen of 24 participants had BDQ-resistant TB (MGIT MIC ≥4 µg/mL) and 8 had BDQ-intermediate infections (MGIT MIC = 2 µg/mL). Participants with pre-existing resistance outnumbered those with resistance acquired during treatment, and 8 of 24 participants had polyclonal infections. BDQ resistance was observed across multiple Mtb strain types and involved a diverse catalog of mmpR5 (Rv0678) mutations, but no mutations in atpE or pepQ. Nine pairs of participants shared genetically similar isolates separated by <5 single nucleotide polymorphisms, concerning for potential transmitted BDQ resistance. CONCLUSIONS: BDQ-resistant TB can arise via multiple, overlapping processes, including transmission of strains with pre-existing resistance. Capturing the within-host diversity of these infections could potentially improve clinical diagnosis, population-level surveillance, and molecular diagnostic test development.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Genotype , Phenotype , Microbial Sensitivity Tests
2.
mBio ; 14(5): e0094623, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37682004

ABSTRACT

IMPORTANCE: This study highlights the impact of specific rifampicin-resistance-conferring mutations on the host immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Clinical reports have previously suggested that multi-drug-resistant) TB patients exhibit altered peripheral immune responses as compared with their drug-sensitive TB counterparts. The murine model of infection with Mtb strains carrying drug-resistance-conferring mutations recapitulated these findings and allowed us to mechanistically interrogate the pathways responsible for driving the divergent immune responses. Our findings underscore the need for greater investigation into bacterial heterogeneity to better appreciate the diversity in host-pathogen interactions during TB disease.


Subject(s)
Interferon Type I , Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Interferon Type I/genetics , Mutation , Antitubercular Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...