Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2784, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555349

ABSTRACT

An organic photovoltaic bulk heterojunction comprises of a mixture of donor and acceptor materials, forming a semi-crystalline thin film with both crystalline and amorphous domains. Domain sizes critically impact the device performance; however, conventional X-ray scattering techniques cannot detect the contrast between donor and acceptor materials within the amorphous intermixing regions. In this study, we employ neutron scattering and targeted deuteration of acceptor materials to enhance the scattering contrast by nearly one order of magnitude. Remarkably, the PM6:deuterated Y6 system reveals a new length scale, indicating short-range aggregation of Y6 molecules in the amorphous intermixing regions. All-atom molecular dynamics simulations confirm that this short-range aggregation is an inherent morphological advantage of Y6 which effectively assists charge extraction and suppresses charge recombination as shown by capacitance spectroscopy. Our findings uncover the amorphous nanomorphology of organic photovoltaic thin films, providing crucial insights into the morphology-driven device performance.

2.
Nat Commun ; 15(1): 232, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177166

ABSTRACT

Exceptional points (EPs) can achieve intriguing asymmetric control in non-Hermitian systems due to the degeneracy of eigenstates. Here, we present a general method that extends this specific asymmetric response of EP photonic systems to address any arbitrary fully-polarized light. By rotating the meta-structures at EP, Pancharatnam-Berry (PB) phase can be exclusively encoded on one of the circular polarization-conversion channels. To address any arbitrary wavefront, we superpose the optical signals originating from two orthogonally polarized -yet degenerate- EP eigenmodes. The construction of such orthogonal EP eigenstates pairs is achieved by applying mirror-symmetry to the nanostructure geometry flipping thereby the EP eigenmode handedness from left to right circular polarization. Non-Hermitian reflective PB metasurfaces designed using such EP superposition enable arbitrary, yet unidirectional, vectorial wavefront shaping devices. Our results open new avenues for topological wave control and illustrate the capabilities of topological photonics to distinctively operate on arbitrary polarization-state with enhanced performances.

3.
Mater Horiz ; 11(1): 151-162, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37889511

ABSTRACT

A new class of thermally activated delayed fluorescence (TADF) pyridine-/pyrazine-containing tetradentate C^C^N^N gold(III) complexes have been designed and synthesized. Displaying photoluminescence quantum yields (PLQYs) of up to 0.77 in solid-state thin films, these complexes showed at-least a six-fold increase in the radiative decay rate constant (kr) in toluene upon increasing temperature from 210 to 360 K. Using variable-temperature (VT) ultrafast transient absorption (TA) spectroscopy, the reverse intersystem crossing (RISC) processes were directly observed and the activation parameters were determined, in line with the results of the Boltzmann two-level model fittings, in which the energy separation values between the lowest-lying singlet excited state (S1) and the lowest-lying triplet excited state (T1), ΔE(S1-T1), of these complexes were estimated to be in the range of 0.16-0.18 eV. Through strategic modification of the position of the electron-donating -tBu substituent in the cyclometalating ligand, the permanent dipole moments (PDMs) of these tetradentate gold(III) emitters could be manipulated to enhance their horizontal alignment in the emitting layer of organic light-emitting devices (OLEDs). Consequently, the resulting vacuum-deposited OLEDs demonstrated a 30% increase in the theoretical out-coupling efficiency (ηout), as well as promising electroluminescence (EL) performance with maximum external quantum efficiencies (EQEs) of up to 15.7%.

5.
Nat Commun ; 14(1): 6481, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838720

ABSTRACT

The realization of operationally stable blue organic light-emitting diodes is a challenging issue across the field. While device optimization has been a focus to effectively prolong device lifetime, strategies based on molecular engineering of chemical structures, particularly at the subatomic level, remains little. Herein, we explore the effect of targeted deuteration on donor and/or acceptor units of thermally activated delayed fluorescence emitters and investigate the structure-property relationship between intrinsic molecular stability, based on isotopic effect, and device operational stability. We show that the deuteration of the acceptor unit is critical to enhance the photostability of thermally activated delayed fluorescence compounds and hence device lifetime in addition to that of the donor units, which is commonly neglected due to the limited availability and synthetic complexity of deuterated acceptors. Based on these isotopic analogues, we observe a gradual increase in the device operational stability and achieve the long-lifetime time to 90% of the initial luminance of 23.4 h at the luminance of 1000 cd m-2 for thermally activated delayed fluorescence-sensitized organic light-emitting diodes. We anticipate our strategic deuteration approach provides insights and demonstrates the importance on structural modification materials at a subatomic level towards prolonging the device operational stability.

6.
Adv Sci (Weinh) ; 10(29): e2301112, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37653609

ABSTRACT

Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.

7.
Small ; 19(44): e2302072, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37431202

ABSTRACT

Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.

8.
J Am Chem Soc ; 145(17): 9584-9595, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37073952

ABSTRACT

A new class of thermally activated delayed fluorescence (TADF) tetradentate C∧C∧N∧N ligand-containing gold(III) complexes containing acridinyl moieties has been designed and synthesized. These complexes exhibit orange-red to deep-red emission with photoluminescence quantum yields (PLQYs) of up to 0.76 in solid-state thin films. Short excited-state lifetimes of ≤2.0 µs and large radiative decay rate constants (kr) in the order of 105 s-1 have also been found in the complexes. High-performance solution-processed and vacuum-deposited organic light-emitting devices (OLEDs) based on these complexes have been fabricated, demonstrating high maximum external quantum efficiencies (EQEs) of 12.2 and 12.7%, respectively, which are among the best values ever reported for red-emitting gold(III)-based OLEDs. In addition, satisfactory operational half-lifetime (LT50) values of up to 34,058 h have been attained in these red-emitting devices. It is found that the operational stability is strongly dependent on the choice of functional groups on the acridinyl moieties, of which the incorporation of -O- and -S- linkers can effectively prolong the LT50 value by an order of magnitude. The TADF properties of the complexes are substantiated by the hypsochromic shift in emission energies and the remarkable enhancement in the emission intensity upon increasing temperature. The TADF properties have also been supported by temperature-dependent ultrafast transient absorption studies, with the direct observation of reverse intersystem crossing (RISC) and the determination of the activation parameters for the very first time, together with their excited-state dynamics.

9.
Light Sci Appl ; 12(1): 66, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36878927

ABSTRACT

Arbitrary polarized vortex beam induced by polarization singularity offers a new platform for both classical optics and quantum entanglement applications. Bound states in the continuum (BICs) have been demonstrated to be associated with topological charge and vortex polarization singularities in momentum space. For conventional symmetric photonic crystal slabs (PhCSs), BIC is enclosed by linearly polarized far fields with winding angle of 2π, which is unfavorable for high-capacity and multi-functionality integration-optics applications. Here, we show that by breaking σz-symmetry of the PhCS, asymmetry in upward and downward directions and arbitrarily polarized BIC can be realized with a bilayer-twisted PhCS. It exhibits elliptical polarization states with constant ellipticity angle at every point in momentum space within the vicinity of BIC. The topological nature of BIC reflects on the orientation angle of polarization state, with a topological charge of 1 for any value of ellipticity angle. Full coverage of Poincaré sphere (i.e., [Formula: see text] and [Formula: see text]) and higher-order Poincaré sphere can be realized by tailoring the twist angles. Our findings may open up new avenues for applications in structured light, quantum optics, and twistronics for photons.

10.
Adv Sci (Weinh) ; 10(12): e2207743, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36808857

ABSTRACT

The 2D MoS2 with superior optoelectronic properties such as high charge mobility and broadband photoresponse has attracted broad research interests in photodetectors (PD). However, due to the atomic thin layer of 2D MoS2 , its pure photodetectors usually suffer from inevitable drawbacks such as large dark current, and intrinsically slow response time. Herein, a new organic material BTP-4F with high mobility is successfully stacked with 2D MoS2 film to form an integrated 2D MoS2 /organic P-N heterojunction, facilitating efficient charge transfer as well as significantly suppressed dark current. As a result, the as-obtained 2D MoS2 /organic (PD) has exhibited excellent response and fast response time of 332/274 µs. The analysis validated photogenerated electron transition from this monolayer MoS2 to subsequent BTP-4F film, whereas the transited electron is originated from the A- exciton of 2D MoS2 by temperature-dependent photoluminescent analysis. The ultrafast charge transfer time of ≈0.24 ps measured by time-resolved transient absorption spectrum is beneficial for efficient electron-hole pair separation, greatly contributing to the obtained fast photoresponse time of 332/274 µs. This work can open a promising window to acquire low-cost and high-speed (PD).

11.
J Am Chem Soc ; 145(4): 2638-2646, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36633557

ABSTRACT

A new series of robust C^C^N carbazolylgold(III) complexes is designed and synthesized through the introduction of inert and sterically bulky oligophenyl substituents on the pyridyl moiety of the cyclometalating ligand. High photoluminescence quantum yields of up to 96% are recorded with these complexes doped in solid-state thin films, and short excited-state lifetimes of 0.3 µs or less in the solid state at room temperature are found. Promising electroluminescence (EL) performances are shown by the vacuum-deposited organic light-emitting devices (OLEDs) based on this series of gold(III) complexes. High external quantum efficiencies of up to 19.5% with efficiency roll-offs of down to 10% at a practical luminance brightness level of 1000 cd m-2 are achieved. More importantly, record-long operational lifetimes (LT50) of up to 470,700 h at 100 cd m-2 are realized, which is currently the highest value among all classes of gold(III) complexes with tridentate pincer ligands. Particularly, by introducing a sterically bulky terphenyl moiety on the reactive site of the pyridine ring, the LT50 value is shown to attain ∼7 times longer half-lifetime than that based on the unsubstituted complex. These unprecedented EL performances and the simple synthetic route in a mercury-free fashion make them promising emitting materials for practical OLEDs toward commercialization.

12.
Sci Bull (Beijing) ; 67(19): 1982-1990, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36546208

ABSTRACT

Visible and near-infrared (NIR) light dual-band photodetectors (PDs) have potential applications in signal detection, bioimaging, optical communications and safety monitoring. Herein, we report an ultrafast perovskite/organic heterojunction dual-mode PD with a voltage-modulated photoresponse range in visible and NIR spectra. The PD, comprising a perovskite layer to absorb visible light (500-810 nm) and an organic bulk heterojunction layer for NIR light absorption (810-950 nm), exhibited a switchable spectral response in the visible or NIR bands. The voltage-modulated visible and NIR photoresponses of the PD were attributable to controlled charge photogeneration in perovskite and organic blend thin films under different bias polarities. The device exhibited peak responsivities of 93.5 and 102.2 mA/W in the visible and NIR bands, respectively; a high detectivity of 4.3 × 109 Jones (at forward bias of 0.7 V and incident 625 nm light) and 1.6 × 1012 Jones (at reverse bias of -1.5 V and incident 900 nm light); a fast microsecond response time; and a wide dynamic range (>120 dB) both in the visible mode and NIR mode. Also, this voltage-modulated dual-band PD shows promising applications in visible light and NIR imaging, which is proven by demonstrating a PD array with 25 pixels (5 × 5).

13.
Angew Chem Int Ed Engl ; 61(47): e202212587, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36169381

ABSTRACT

Constructing stable surface modification layer is an effective strategy to suppress dendrite growth and side reactions of Zinc (Zn) metal anode in aqueous Zn-ion battery. Herein, a multicomponent Cu-Zn alloy interlayer with superior Zn affinity, high toughness and effective inhibition effect on lattice distortion is constructed on Zn foil (Cu-Zn@Zn) to fabricate ultra-stable Zn metal anode. Owning to the advantages of high binding energy of Cu-Zn alloy layer with Zn atoms and less contact area between metallic Zn and electrolyte, the as-prepared Cu-Zn@Zn electrode not only restricts the aggregation of Zn atoms, but also suppresses the pernicious hydrogen evolution and corrosion, leading to homogeneous Zn deposition and outstanding electrochemical performances. Accordingly, the symmetric battery with Cu-Zn@Zn electrode exhibits an ultra-long cycle life of 5496 h at 1 mA cm-2 for 1 mAh cm-2 , and the Cu-Zn@Zn//V2 O5 pouch cell demonstrates excellent cycling stability with a capacity retention of 88 % after 600 cycles.

14.
Chem Sci ; 13(34): 10129-10140, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128251

ABSTRACT

A series of carbazolyl ligands has been designed and synthesized through the integration of various electron-donating and electron-accepting motifs, including electron-donating 4-(diphenylamino)aryl and electron-accepting cyano and diphenylphosphine oxide moieties, for the development of a new class of gold(iii) complexes, where the energies of their triplet intraligand and ligand-to-ligand charge transfer excited states can be manipulated for the activation of thermally activated delayed fluorescence (TADF). Upon excitation, these complexes show high photoluminescence quantum yields of up to 80% in solid-state thin films, with short excited state lifetimes down to 1 µs. Vacuum-deposited and solution-processed organic light-emitting devices based on these complexes demonstrate promising electroluminescence (EL) performance with maximum external quantum efficiencies of 15.0% and 11.7%, respectively, and notably small efficiency roll-off values of less than 1% at the practical luminance brightness level of 1000 cd m-2. These distinct EL performances are believed to be due to the occurrence of multichannel radiative decay pathways via both phosphorescence and TADF that significantly shorten the emission lifetimes and hence reduce the occurrence of the detrimental triplet-triplet annihilation in the gold(iii) complexes.

15.
Adv Sci (Weinh) ; 9(20): e2200393, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561063

ABSTRACT

Solution processable quasi-2D (Q-2D) perovskite materials are emerging as a promising candidate for blue light source in full-color display applications due to their good color saturation property, high brightness, and spectral tunability. Herein, an efficient energy cascade channel is developed by introducing sodium bromide (NaBr) in phenyl-butylammonium (PBA)-containing mixed-halide Q-2D perovskites for a blue perovskite light-emitting diode (PeLED). The incorporation of alkali metal contributes to the nucleation and growth of Q-2D perovskites into graded distribution of domains with different layer number . The study of excitation dynamics by transient absorption (TA) spectroscopy confirms that NaBr induces more Q-2D perovskite phases with small n number, providing a graded energy cascade pathway to facilitate more efficient energy transfer processes. In addition, the nonradiative recombination within the Q-2D perovskites is significantly suppressed upon Na+ incorporation, as validated by the trap density estimation. Consequently, the optimized blue PeLEDs manifest a peak external quantum efficiency (EQE) of 7.0% emitting at 486 nm with a maximum luminance of 1699 cd m-2 . It is anticipated that these findings will improve the understanding of alkali-metal-assisted optimization of Q-2D perovskites and pave the way toward high-performance blue PeLEDs.

16.
ACS Appl Mater Interfaces ; 14(1): 1546-1556, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34978413

ABSTRACT

We designed and synthesized a new class of six phosphorescent [3 + 2 + 1] iridium(III) complexes [(pbib)Ir(C^C)CN] bearing a tridentate 1,3-bis(1-butylimidazolin-2-ylidene) phenyl N-heterocyclic carbene (NHC)-based pincer ligand (pbib), bidentate imidazole-based NHC ligands (C^C), and a monodentate cyano group and investigated their photophysical, electrochemical, and thermal stabilities and electroluminescent properties. The extended π-conjugation of the imidazole-based C^C ligand is found to be the key to fine-tune the emission energies from ultraviolet blue (λ = 378 nm) to saturated blue (λ = 482 nm), as shown by electrochemical and photophysical studies, which is also revealed by the density functional theory (DFT) and time-dependent DFT calculations. Vacuum-deposited organic light-emitting diode devices have been fabricated with these newly synthesized emitters and exhibited the best external quantum efficiency of 6.4% and Commission International de L'Éclairage (CIE) coordinates of (0.163, 0.096), where the CIE y is very similar to the National Television System Committee standard blue CIE (x, y) coordinates of (0.149, 0.085). These results indicate that the novel [3 + 2 + 1] coordinated iridium(III) complexes [(pbib)Ir(C^C)CN], having a saturated blue emission, not only could alleviate the photodegradation of the emitters when compared to [(pbib)Ir(pmi)CN] but also provide new design strategies of saturated-blue-emitting iridium(III) complexes.

17.
Mater Horiz ; 9(1): 281-293, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34473166

ABSTRACT

A new class of yellow- to red-emitting carbazolylgold(III) complexes containing isomeric thienopyridine or thienoquinoline moieties in the cyclometalating ligand has been designed and synthesized, which showed high photoluminescence quantum yields of over 80% in solid-state thin films. The isomeric effect and extended π-conjugation of the N-heterocycles have been found to remarkably perturb the photophysical, electrochemical and electroluminescence properties of the gold(III) complexes. In particular, the operational lifetimes of organic light-emitting devices based on that incorporated with thieno[2,3-c]pyridine are almost three orders of magnitude longer than that incorporated with thieno[3,2-c]pyridine. This has led to long device operational stability with a LT70 value of up to 63 200 h at a luminance of 100 cd m-2 and a long half-lifetime of 206 800 h, as well as maximum external quantum efficiencies of up to 8.6% and 14.5% in the solution-processed and vacuum-deposited devices, respectively. This work provides insights into the development of robust and highly luminescent gold(III) complexes and the identification of stable molecular motifs for designing efficient emitters.

18.
Chem Sci ; 12(44): 14833-14844, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34820099

ABSTRACT

A new class of C^C^N ligand-containing carbazolylgold(iii) dendrimers has been designed and synthesized. High photoluminescence quantum yields of up to 82% in solid-state thin films and large radiative decay rate constants in the order of 105 s-1 are observed. These gold(iii) dendrimers are found to exhibit thermally activated delayed fluorescence (TADF), as supported by variable-temperature emission spectroscopy, time-resolved photoluminescence decay and computational studies. Solution-processed organic light-emitting diodes (OLEDs) based on these gold(iii) dendrimers have been fabricated, which exhibit a maximum current efficiency of 52.6 cd A-1, maximum external quantum efficiency of 15.8% and high power efficiency of 41.3 lm W-1. The operational stability of these OLEDs has also been recorded, with the devices based on zero- and second-generation dendrimers showing maximum half-lifetimes of 1305 and 322 h at 100 cd m-2, respectively, representing the first demonstration of operationally stable solution-processed OLEDs based on gold(iii) dendrimers.

19.
ACS Appl Mater Interfaces ; 13(48): 57673-57683, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34806357

ABSTRACT

A series of arylgold(III) complexes of tridentate diphenylpyridine ligand incorporated with fluorene and its heterocyclic spiro derivatives, spiro[fluorene-9,9'-xanthene] and spiro[acridine-9,9'-fluorene], as auxiliary ligands has been prepared. This class of complexes exhibits high decomposition temperatures of up to 387 °C, excellent film morphologies in solid-state thin films with a root-mean-square roughness smaller than 0.20 nm, as well as high photoluminescence quantum yields of up to 0.72 in solid-state thin films. Solution-processed organic light-emitting devices (OLEDs) fabricated from this series of complexes as dopants show intense electroluminescence in the sky-blue region with maximum external quantum efficiencies of 10.0%. Taking advantage of their high thermal stability, vacuum-deposited OLEDs have also been fabricated and satisfactory operational lifetimes of ∼300 h have been recorded.

20.
Chem Sci ; 12(27): 9516-9527, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34349927

ABSTRACT

Here, we report the design and synthesis of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which show tunable emission colors spanning from the yellow to red region in the solid state and exhibit thermally activated delayed fluorescence (TADF) properties. These complexes display high photoluminescence quantum yields of up to 0.87 and short excited-state lifetimes in sub-microsecond timescales, yielding high radiative decay rate constants on the order of up to 106 s-1. The observation of the drastic enhancement in the emission intensity of the complexes with insignificant change in the excited-state lifetime upon increasing the temperature from 200 to 360 K indicates an increasing radiative decay rate. The experimentally estimated energy splitting between the lowest-lying singlet excited state (S1) and the lowest-lying triplet excited state (T1), ΔE S1-T1 , is found to be as small as ∼0.03 eV (250 cm-1), comparable to the value of ∼0.05 eV (435 cm-1) obtained from computational studies. The delicate choice of the cyclometalating ligand and the fused heterocyclic ligand is deemed the key to induce TADF through the control of the energy levels of the intraligand and the ligand-to-ligand charge transfer excited states. This work represents the realization of highly emissive yellow- to red-emitting gold(iii) TADF complexes incorporated with fused heterocyclic alkynyl ligands and their applications in organic light-emitting devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...