Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Prog Neurobiol ; 236: 102614, 2024 May.
Article in English | MEDLINE | ID: mdl-38641040

ABSTRACT

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Subject(s)
Depression , Lipopolysaccharides , Mice, Knockout , Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Lipopolysaccharides/pharmacology , Neurons/metabolism , Neurons/drug effects , Mice , Depression/metabolism , Depression/chemically induced , Receptors, Complement/metabolism , Mice, Inbred C57BL , Male , Glutamic Acid/metabolism
2.
Cell Mol Gastroenterol Hepatol ; 17(6): 965-981, 2024.
Article in English | MEDLINE | ID: mdl-38342302

ABSTRACT

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS: Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS: Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS: Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.


Subject(s)
Disease Models, Animal , Inflammation , Liver , Macrophages , Mice, Knockout , Reperfusion Injury , cdc42 GTP-Binding Protein , Animals , Reperfusion Injury/pathology , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Liver/pathology , Liver/metabolism , Liver/immunology , Inflammation/pathology , Inflammation/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , STAT3 Transcription Factor/metabolism , Male , STAT1 Transcription Factor/metabolism , Cytokines/metabolism , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/deficiency , Mice, Inbred C57BL , Gene Deletion
3.
Bioorg Chem ; 143: 107023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091719

ABSTRACT

Cells of most eukaryotic species contain mitochondria, which play a role in physiological processes such as cellular senescence, metabolism, and autophagy. Viscosity is considered a key marker for many illnesses and is involved in several crucial physiological processes. Cyanide (CN-) can target cytochrome-c oxidase, disrupting the mitochondrial electron transport chain and causing cell death through asphyxiation. In this study, a fluorescent probe named HL-1, which targets mitochondria and measures viscosity and CN- levels, was designed and synthesized. HL-1 is viscosity-sensitive, with a linear correlation coefficient of up to 0.992. In addition, HL-1 was found to change color substantially during a nucleophilic addition reaction with CN-, which has a low detection limit of 47 nM. HL-1 not only detects viscosity and exogenous CN- in SKOV-3 cells and zebrafish but also monitors viscosity changes during mitochondrial autophagy in real time. Furthermore, HL-1 has been used successfully to monitor changes in mitochondrial membrane potential during apoptosis. Endogenous CN- in plant samples was quantified. HL-1 provides new ideas for studying viscosity and CN-.


Subject(s)
Fluorescent Dyes , Zebrafish , Animals , Humans , Fluorescent Dyes/metabolism , Viscosity , Cyanides , Mitochondria/metabolism , HeLa Cells , Carbazoles/metabolism
4.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138467

ABSTRACT

Reactive oxygen species (ROS) are pivotal signaling molecules that control a variety of physiological functions. As a member of the ROS family, peroxynitrite (ONOO-) possesses strong oxidation and nitrification abilities. Abnormally elevated levels of ONOO- can lead to cellular oxidative stress, which may cause several diseases. In this work, based on the rhodamine fluorophore, we designed and synthesized a novel small-molecule fluorescent probe (DH-1) for ONOO-. Upon reaction with ONOO-, DH-1 exhibited a significant fluorescence signal enhancement (approximately 34-fold). Moreover, DH-1 showed an excellent mitochondria-targeting capability. Confocal fluorescence imaging validated its ability to detect ONOO- changes in HeLa and RAW264.7 cells. Notably, we observed the ONOO- generation during the ferroptosis process by taking advantage of the probe. DH-1 displayed good biocompatibility, facile synthesis, and high selectivity, and may have potential applications in the study of ONOO--associated diseases in biosystems.


Subject(s)
Fluorescent Dyes , Peroxynitrous Acid , Humans , Reactive Oxygen Species , Mitochondria , Rhodamines
5.
Neurosci Bull ; 39(2): 245-260, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36260252

ABSTRACT

Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.


Subject(s)
Zona Incerta , Mice , Animals , Zona Incerta/metabolism , Neurons/metabolism , Fear/physiology , Somatostatin/metabolism
6.
FASEB J ; 36(9): e22456, 2022 09.
Article in English | MEDLINE | ID: mdl-35969153

ABSTRACT

The dorsal hippocampus plays a pivotal role in spatial memory. However, the role of subregion-specific molecular pathways in spatial cognition remains unclear. We observed that the transcriptional coregulator C-terminal binding protein 2 (CtBP2) presented CA3-specific enrichment in expression. RNAi interference of CtBP2 in the dorsal CA3 (dCA3) neurons, but not the ventral CA3 (vCA3), specifically impaired spatial reference memory and reduced the expression of GluR2, the calcium permeability determinant subunit of AMPA receptors. Application of an antagonist for GluR2-absent calcium permeable AMPA receptors rescued spatial memory deficits in dCA3 CtBP2 knockdown animals. Transcriptomic analysis suggest that CtBP2 may regulate GluR2 protein level through post-translational mechanisms, especially by the endocytosis pathway which regulates AMPA receptor sorting. Consistently, CtBP2 deficiency altered the mRNA expression of multiple endocytosis-regulatory genes, and CtBP2 knockdown in primary hippocampal neurons enhanced GluR2-containing AMPA receptor endocytosis. Together, our results provide evidence that the dCA3 regulates spatial reference memory by the CtBP2/GluR2 pathway through the modulation of calcium permeable AMPA receptors.


Subject(s)
CA3 Region, Hippocampal , Eye Proteins , Receptors, AMPA , Spatial Memory , Animals , CA3 Region, Hippocampal/metabolism , Calcium/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121496, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35716450

ABSTRACT

Mitophagy, a mitochondria-selective autophagy process, plays critical roles in maintaining intracellular homeostasis by removing the damaged mitochondria and recycling the nutrients in a lysosome-dependent manner. Mitophagy process could result in the changes of mitochondrial pH. So fluorescent probes for detecting mitochondrial pH during mitophagy are highly needed for exploring the functions of mitochondria. Herein, a series of near-infrared pH probes were designed based on the rhodamine framework. The probes showed high sensitivity for pH with the tunable pKa from 4.74 to 6.54. Particularly, for probe 5 (with the pKa of 6.54), a linear relationship between fluorescence intensity and pH in the range of 5.6-7.2 was observed, which was suitable for mitochondrial pH detection. The probe displayed excellent mitochondria-targeting ability. It was applied to monitor pH changes during mitophagy caused by starvation. Besides, in vivo non-invasive visualization of tumor pH variations was achieved via the fluorescence imaging in the near-infrared region. We anticipate that the probe may be a useful tool for revealing essential information about mitophagy-related research and clinical tumor diagnosis.


Subject(s)
Mitophagy , Neoplasms , Fluorescent Dyes , Humans , Hydrogen-Ion Concentration , Mitochondria/pathology , Neoplasms/diagnostic imaging , Neoplasms/pathology
8.
Neurosci Bull ; 38(6): 565-575, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35080731

ABSTRACT

Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.


Subject(s)
Central Amygdaloid Nucleus , Animals , Behavior, Animal , GABAergic Neurons/physiology , Mesencephalon/metabolism , Vesicular Glutamate Transport Protein 2/metabolism
9.
Neurosci Bull ; 36(11): 1381-1394, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32691225

ABSTRACT

The amygdala, which is involved in various behaviors and emotions, is reported to connect with the whole brain. However, the long-range inputs of distinct cell types have not yet been defined. Here, we used a retrograde trans-synaptic rabies virus to generate a whole-brain map of inputs to the main cell types in the mouse amygdala. We identified 37 individual regions that projected to neurons expressing vesicular glutamate transporter 2, 78 regions to parvalbumin-expressing neurons, 104 regions to neurons expressing protein kinase C-δ, and 89 regions to somatostatin-expressing neurons. The amygdala received massive projections from the isocortex and striatum. Several nuclei, such as the caudate-putamen and the CA1 field of the hippocampus, exhibited input preferences to different cell types in the amygdala. Notably, we identified several novel input areas, including the substantia innominata and zona incerta. These findings provide anatomical evidence to help understand the precise connections and diverse functions of the amygdala.


Subject(s)
Amygdala , Brain Mapping , Amygdala/physiology , Animals , CA1 Region, Hippocampal/physiology , Male , Mice , Neural Pathways/physiology , Parvalbumins/physiology , Vesicular Glutamate Transport Proteins/physiology
10.
Nat Med ; 25(2): 350, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30700866

ABSTRACT

In the version of this article originally published, there were several errors in Fig. 4. In Fig. 4a, the title read '3D repeated optical inhibition after CSDS.' It should have read '3-day repeated optical inhibition after CSDS.' In Fig. 4c, two labels that should have been aligned with the time axis appeared in the wrong place in the figure. The ticks labeled 'SI' and 'Fiber implant' should have also been labeled with '10' and '14,' respectively. Additionally, in Fig. 4j, a label that should have been aligned with the time axis appeared in the wrong place in the figure. The tick labeled 'Fiber implant' should have also been labeled with '14.' The errors have been corrected in the print, PDF and HTML versions of the manuscript.

11.
Nat Med ; 25(2): 337-349, 2019 02.
Article in English | MEDLINE | ID: mdl-30643290

ABSTRACT

Major depressive disorder is a devastating psychiatric disease that afflicts up to 17% of the world's population. Postmortem brain analyses and imaging studies of patients with depression have implicated basal lateral amygdala (BLA) dysfunction in the pathophysiology of depression. However, the circuit and molecular mechanisms through which BLA neurons modulate depressive behavior are largely uncharacterized. Here, in mice, we identified that BLA cholecystokinin (CCK) glutamatergic neurons mediated negative reinforcement via D2 medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and that chronic social defeat selectively potentiated excitatory transmission of the CCKBLA-D2NAc circuit in susceptible mice via reduction of presynaptic cannabinoid type-1 receptor (CB1R). Knockdown of CB1R in the CCKBLA-D2NAc circuit elevated synaptic activity and promoted stress susceptibility. Notably, selective inhibition of the CCKBLA-D2NAc circuit or administration of synthetic cannabinoids in the NAc was sufficient to produce antidepressant-like effects. Overall, our studies reveal the circuit and molecular mechanisms of depression.


Subject(s)
Amygdala/metabolism , Behavior, Animal , Cholecystokinin/metabolism , Depression/metabolism , Glutamic Acid/metabolism , Neurons, Afferent/metabolism , Nucleus Accumbens/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Down-Regulation , Male , Mice, Inbred C57BL , Optogenetics , Stress, Psychological/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...