Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Pharm Pract ; : 8971900241273241, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137364

ABSTRACT

Background: Amiodarone-induced anaphylaxis is seldom reported. The mechanism of this anaphylaxis is unknown. Methods: A literature search was carried out with keywords "Amiodarone" and "Anaphylaxis" and "polysorbate 80" or "hypotension." A search using "amiodarone" in the FDA Adverse Event Reporting System (FAERS) from 1969 to 2024 was also conducted. Results: There are a total of 10 cases of amiodarone-induced anaphylaxis in the literature. Six patients were male. Ages ranged from 15 to 86 years old. Nine cases were triggered by intravenous injection (IV) and one by oral administration. Eight patients did not have previous exposure to amiodarone. The trigger times for IV amiodarone were immediate to 90 minutes. All nine cases of IV amiodarone resulted in hypotension (90%), with an immeasurable blood pressure (70%). Presentations included bronchospasm or a skin rash (60%), angioedema (40%), and unconsciousness (20%). Only one patient had a history of allergy to penicillin and sulfonamide. An amiodarone skin test was positive on one patient. Increased blood tryptase (4 cases), positive basophil activation test to amiodarone (2 cases), increased eosinophil count (1 case), and increased serum IgE (1 case) were reported. Amiodarone was terminated in 80% of the patients. Epinephrine, norepinephrine, antihistamine-1, or steroids were used to rescue patients. Four patients were intubated. All patients fully recovered. In the FAERS database, 89 cases of amiodarone-associated anaphylaxis were reported, resulting in 14 deaths. Conclusions: Solvent polysorbate 80, amiodarone, and iodide may contribute to amiodarone-induced anaphylaxis. Prompt treatment is the key to saving patients.

2.
J Neurosci Methods ; 411: 110250, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151658

ABSTRACT

BACKGROUND: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired. NEW METHOD: A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep. RESULTS: Sleep states were classified with an accuracy of 84 % and Cohen's κ of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner. COMPARISON WITH EXISTING METHOD: On a held out, repeated 3-hour WFCI recording, the CNN-BiLSTM achieved a κ of 0.67, comparable to a κ of 0.65 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS: The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep research.

3.
J Org Chem ; 89(14): 9910-9922, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38959240

ABSTRACT

A modular, enantioselective approach to access the bioactive 7,9-dihydroxy- and 9-hydroxy-7-keto-8,4'-oxyneolignans is disclosed, which employs stereoselective Mitsunobu reactions of enantiopure 2-aryl-1,3-dioxan-5-ols and functionalized phenols. The enantiopure dioxanols are prepared through Sharpless asymmetric dihydroxylation of protected coniferyl or sinapyl alcohols and subsequent benzylidene acetal formation. Through a mix-and-match coupling approach, six of the eight possible erythro-7,9-dihydroxy-8,4'-oxyneolignan enantiomeric natural products (bearing a C-1' hydroxypropyl chain) were generated following sequential deprotection. Subsequent benzylic oxidation afforded the 7-keto-derivatives, resulting in enantioselective syntheses of each enantiomer of the natural products asprenol B and icariol A1.

4.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746375

ABSTRACT

Small molecules promoting protein-protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While Cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging. We report here an approach to glutarimide-containing molecular glue synthesis using multicomponent reactions as a central modular core-forming step. Screening the resulting library identified HRZ-01 derivatives that target casein kinase 1 alpha (CK1α) and Wee-like protein kinase (WEE1). Further medicinal chemistry efforts led to identification of selective monovalent WEE1 degraders that provide a potential starting point for the eventual development of a selective chemical degrader probe. The structure of the hit WEE1 degrader complex with CRBN-DDB1 and WEE1 provides a model of the protein-protein interface and a rationale for the observed kinase selectivity. Our findings suggest that modular synthetic routes combined with in-depth structural characterization give access to selective molecular glue degraders and expansion of the CRBN-degradable proteome.

5.
J Dent ; 144: 104923, 2024 05.
Article in English | MEDLINE | ID: mdl-38461884

ABSTRACT

OBJECTIVES: This paper evaluated the success rates of pulpotomy, compared its efficacy with non-surgical root canal treatment (NSRCT), evaluated different pulpotomy techniques, and analyzed the effectiveness of contemporary bioactive materials in managing irreversible pulpitis in mature permanent teeth. DATA SOURCES: A comprehensive literature search was conducted across multiple databases including PubMed, Web of Science, Scopus, and the Cochrane Library. Search was conducted from the inception of each database to the present, adhering to PRISMA 2020 guidelines. STUDY SELECTION: Studies were selected through a multi-step screening process, focusing on adult populations, randomized controlled trials, and single-arm trials. DATA: Fifteen randomized controlled trials and eight single-arm trials were included. For a follow-up period of more than 24 months, pooled clinical success rate of pulpotomy was 92.9 % (95 %CI;82.1-99.0 %), whereas pooled radiographic success rate was 78.5 % (95 %CI;66.7-88.4 %). Meta-analyses showed that there was no significant difference in success rates between pulpotomy and NSRCT, between full and partial pulpotomy techniques, or between Mineral Trioxide Aggregate pulpotomy and Calcium Enriched Mixture pulpotomy. The results indicated comparable efficacy across these variables. CONCLUSIONS: The study highlights the potential of less invasive treatments. Pulpotomy may be a viable alternative to NSRCT for managing irreversible pulpitis in mature permanent teeth. Limitations such as the low quality of some single-arm trials and the high risk of bias in some randomized controlled trials highlight the need for further research to standardize methodologies and broaden literature inclusion for a more comprehensive understanding of the efficacy of pulpotomy, considering the high success rates reported. Clinical Significance This quantitative systematic review recognizes the potential of full or partial pulpotomy as a viable treatment alternative to root canal therapy for managing irreversible pulpitis in mature permanent teeth. Future studies should aim for standardized protocols to validate these findings and improve patient treatment outcomes.


Subject(s)
Pulpitis , Pulpotomy , Adult , Humans , Aluminum Compounds/therapeutic use , Calcium Compounds/therapeutic use , Dentition, Permanent , Drug Combinations , Pulpitis/therapy , Pulpotomy/methods , Randomized Controlled Trials as Topic , Root Canal Filling Materials/therapeutic use , Root Canal Therapy/methods , Silicates/therapeutic use , Treatment Outcome , Controlled Clinical Trials as Topic
6.
ArXiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38313204

ABSTRACT

BACKGROUND: Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired. NEW METHOD: A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep. RESULTS: Sleep states were classified with an accuracy of 84% and Cohen's kappa of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner. COMPARISON WITH EXISTING METHOD: On a 3-hour WFCI recording, the CNN-BiLSTM achieved a kappa of 0.67, comparable to a kappa of 0.65 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS: The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep.

7.
Acta Neuropathol ; 147(1): 17, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38231266

ABSTRACT

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/genetics , Prion Diseases/diagnosis , Prion Diseases/genetics , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/genetics , Biomarkers
8.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37812589

ABSTRACT

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Subject(s)
Brain Diseases , Microcephaly , Humans , Child , Saccharomyces cerevisiae/genetics , Brain Diseases/genetics , Microcephaly/genetics , Genotype , Serine
9.
Chembiochem ; 24(23): e202300371, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37756477

ABSTRACT

Dysregulated oxidative stress plays a major role in cancer pathogenesis and some types of cancer cells are particularly vulnerable to inhibition of their cellular antioxidant capacity. Glutamate-cysteine ligase (GCL) is the first and rate-limiting step in the synthesis of the major cellular antioxidant glutathione (GSH). Developing a GCL inhibitor may be an attractive therapeutic strategy for certain cancer types that are particularly sensitive to oxidative stress. In this study, we reveal a cysteine-reactive ligand, EN25, that covalently targets an allosteric cysteine C114 on GCLM, the modifier subunit of GCL, and leads to inhibition of GCL activity. This interaction also leads to reduced cellular GSH levels and impaired cell viability in ARID1A-deficient cancer cells, which are particularly vulnerable to glutathione depletion, but not in ARID1A-positive cancer cells. Our studies uncover a novel potential ligandable site within GCLM that can be targeted to inhibit GSH synthesis in vulnerable cancer cell types.


Subject(s)
Antioxidants , Glutamate-Cysteine Ligase , Glutamate-Cysteine Ligase/metabolism , Cysteine/metabolism , Enzyme Inhibitors , Glutathione/metabolism
10.
J Pathol ; 260(5): 666-678, 2023 08.
Article in English | MEDLINE | ID: mdl-37272582

ABSTRACT

Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Heart Failure , Lymphatic Vessels , Myocardial Infarction , Animals , Infant, Newborn , Humans , Heart , Myocardial Infarction/pathology , Lymphatic Vessels/pathology , Heart Failure/pathology , Regeneration , Mammals
11.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146589

ABSTRACT

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Subject(s)
Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Ornithine Carbamoyltransferase , Humans , Amino Acid Substitution , Hyperammonemia/etiology , Hyperammonemia/genetics , Mutation, Missense/genetics , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/therapy
12.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36711904

ABSTRACT

Background: Pathogenic variants in PHGDH, PSAT1 , and PSPH cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable. Methods: Recently, our laboratory established a yeast-based assay for human PSAT1 function. We have now applied it at scale to assay the functional impact of 1,914 SNV-accessible amino acid substitutions. In addition to assaying the functional impact of individual variants in yeast haploid cells, we can assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results: Results of our assays of individual variants (in haploid yeast cells) agree well with clinical interpretations and protein structure-function relationships, supporting the use of our data as functional evidence under the ACMG interpretation guidelines. Results from our diploid assay successfully distinguish patient genotypes from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements (in haploid yeast cells) to accurately predict the biallelic function (in diploid yeast cells) of ~ 1.8 million allele combinations corresponding to potential human genotypes. Conclusions: Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of a rare disease.

13.
Cardiovasc Res ; 119(1): 136-154, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36082978

ABSTRACT

AIM: Myocardial infarction remains the leading cause of heart failure. The adult human heart lacks the capacity to undergo endogenous regeneration. New blood vessel growth is integral to regenerative medicine necessitating a comprehensive understanding of the pathways that regulate vascular regeneration. We sought to define the transcriptomic dynamics of coronary endothelial cells following ischaemic injuries in the developing and adult mouse and human heart and to identify new mechanistic insights and targets for cardiovascular regeneration. METHODS AND RESULTS: We carried out a comprehensive meta-analysis of integrated single-cell RNA-sequencing data of coronary vascular endothelial cells from the developing and adult mouse and human heart spanning healthy and acute and chronic ischaemic cardiac disease. We identified species-conserved gene regulatory pathways aligned to endogenous neovascularization. We annotated injury-associated temporal shifts of the endothelial transcriptome and validated four genes: VEGF-C, KLF4, EGR1, and ZFP36. Moreover, we showed that ZFP36 regulates human coronary endothelial cell proliferation and defined that VEGF-C administration in vivo enhances clonal expansion of the cardiac vasculature post-myocardial infarction. Finally, we constructed a coronary endothelial cell meta-atlas, CrescENDO, to empower future in-depth research to target pathways associated with coronary neovascularization. CONCLUSION: We present a high-resolution single-cell meta-atlas of healthy and injured coronary endothelial cells in the mouse and human heart, revealing a suite of novel targets with great potential to promote vascular regeneration, and providing a rich resource for therapeutic development.


Subject(s)
Myocardial Infarction , Vascular Endothelial Growth Factor C , Adult , Animals , Mice , Humans , Vascular Endothelial Growth Factor C/metabolism , Endothelial Cells/metabolism , Myocytes, Cardiac/metabolism , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Endothelium/metabolism , Neovascularization, Pathologic/metabolism , Regeneration
14.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-36277479

ABSTRACT

Deep learning methods have been developed to classify sleep states of mouse electroencephalogram (EEG) and electromyogram (EMG) recordings with accuracy reported as high as 97%. However, when applied to independent datasets, with a variety of experimental and recording conditions, sleep state classification accuracy often drops due to distributional shift. Mixture z-scoring, a pre-processing standardization of EEG/EMG signals, has been suggested to account for these variations. This study sought to validate mixture z-scoring in combination with a deep learning method on an independent dataset. The open-source software Accusleep, which implements mixture z-scoring in combination with deep learning via a convolutional neural network, was used to classify sleep states in 12, three-hour EEG/EMG recordings from mice sleeping in a head-fixed position. Mixture z-scoring with deep learning classified sleep states on two independent recordings with 85-92% accuracy and a Cohen's κ of 0.66-0.71. These results validate mixture z-scoring in combination with deep learning to classify sleep states with the potential for widespread use.

15.
Transfusion ; 62(9): 1772-1778, 2022 09.
Article in English | MEDLINE | ID: mdl-35904145

ABSTRACT

BACKGROUND: Institutional data on initiating and maintaining a low-titer O positive whole blood (LTOWB) inventory for the civilian trauma sector may help other institutions start a LTOWB program. This study from a level 1 trauma center with a hospital-based donor center highlights challenges faced during the collection, maintenance, and utilization of LTOWB. STUDY DESIGN AND METHODS: Male O positive donors with low (≤1:100) anti-A and anti-B antibody titers were recruited for LTOWB collection. The daily inventory goal of 4 LTOWB units was kept in the emergency department refrigerator and transfused to adult male trauma patients. Unused units older than 10 days were reprocessed into packed red blood cells. RESULTS: Of 900 donors screened, 61% qualified and 52% of eligible donors provided a collective total of 505 LTOWB units over 2.5 years. The number of collected units directly correlated with the availability of inventory; 42% of the units were transfused, 54% were reprocessed, and 4% were discarded. The inventory goal was maintained for 56% of the year 2018 and 83% of the year 2019. Over these 2 years, 52% of patients had their transfusion needs fully met, 41% had their needs partially met, and 6.5% did not have their needs met. DISCUSSION: Initial challenges to LTOWB implementation were inventory shortages, low utilization rates, and failure to meet clinical demand. Proposed solutions include allowing for a higher yet safe titer, extending shelf life, expanding the donor pool, identifying barriers to utilization, and permitting use in female trauma patients beyond childbearing age.


Subject(s)
Trauma Centers , Wounds and Injuries , ABO Blood-Group System , Adult , Blood Preservation , Blood Transfusion , Female , Humans , Male , Resuscitation , Wounds and Injuries/therapy
16.
Yeast ; 39(6-7): 354-362, 2022 06.
Article in English | MEDLINE | ID: mdl-35706372

ABSTRACT

Meiotic mapping, a linkage-based method for analyzing the recombinant progeny of a cross, has long been a cornerstone of genetic research. The yeast Saccharomyces cerevisiae is a powerful system because it is possible to isolate and cultivate the four products (spores) of a single meiotic event. However, the throughput of this process has historically been limited by the process of identifying tetrads in a heterogeneous population of vegetative cells, tetrads, and dyads followed by manual separation (dissection) of the spores contained in a tetrad. To date, methods that facilitate high throughput characterization and isolation of meiotic progeny have relied on genetic engineering. Here, we characterize the ability of the fluorescent dye DiBAC4 (5) to stain yeast tetrads and dyads as well as to adhere to spores following bulk tetrad disruption. Applications include quantitative assays of sporulation rates and efficiency by flow cytometry as well as enrichment of intact tetrads, dyads, or disrupted spores by fluorescence-activated cell sorting  in strains that have not been genetically modified.


Subject(s)
Meiosis , Saccharomyces cerevisiae , Flow Cytometry/methods , Saccharomyces cerevisiae/genetics , Spores, Fungal/genetics
17.
Neuroimage ; 257: 119287, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35594811

ABSTRACT

Normal aging is associated with a variety of neurologic changes including declines in cognition, memory, and motor activity. These declines correlate with neuronal changes in synaptic structure and function. Degradation of brain network activity and connectivity represents a likely mediator of age-related functional deterioration resulting from these neuronal changes. Human studies have demonstrated both general decreases in spontaneous cortical activity and disruption of cortical networks with aging. Current techniques used to study cerebral network activity are hampered either by limited spatial resolution (e.g. electroencephalography, EEG) or limited temporal resolution (e.g., functional magnetic resonance imaging, fMRI). Here we utilize mesoscale imaging of neuronal activity in Thy1-GCaMP6f mice to characterize neuronal network changes in aging with high spatial resolution across a wide frequency range. We show that while evoked activity is unchanged with aging, spontaneous neuronal activity decreases across a wide frequency range (0.01-4 Hz) involving all regions of the cortex. In contrast to this global reduction in cortical power, we found that aging is associated with functional connectivity (FC) deterioration of select networks including somatomotor, cingulate, and retrosplenial nodes. These changes are corroborated by reductions in homotopic FC and node degree within somatomotor and visual cortices. Finally, we found that whole-cortex delta power and delta band node degree correlate with exploratory activity in young but not aged animals. Together these data suggest that aging is associated with global declines in spontaneous cortical activity and focal deterioration of network connectivity, and that these reductions may be associated with age-related behavioral declines.


Subject(s)
Aging , Electroencephalography , Aged , Aging/physiology , Animals , Brain Mapping , Cognition , Humans , Magnetic Resonance Imaging/methods , Mice
18.
J Neurosci Methods ; 366: 109421, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34822945

ABSTRACT

BACKGROUND: Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural dynamics in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming and often suffers from low inter- and intra-rater reliability and invasiveness. Therefore, an automated sleep state classification method that operates on WFCI data alone is needed. NEW METHOD: A hybrid, two-step method is proposed. In the first step, spatial-temporal WFCI data is mapped to multiplex visibility graphs (MVGs). Subsequently, a two-dimensional convolutional neural network (2D CNN) is employed on the MVGs to be classified as wakefulness, NREM and REM. RESULTS: Sleep states were classified with an accuracy of 84% and Cohen's κ of 0.67. The method was also effectively applied on a binary classification of wakefulness/sleep (accuracy=0.82, κ = 0.62) and a four-class wakefulness/sleep/anesthesia/movement classification (accuracy=0.74, κ = 0.66). Gradient-weighted class activation maps revealed that the CNN focused on short- and long-term temporal connections of MVGs in a sleep state-specific manner. Sleep state classification performance when using individual brain regions was highest for the posterior area of the cortex and when cortex-wide activity was considered. COMPARISON WITH EXISTING METHOD: On a 3-hour WFCI recording, the MVG-CNN achieved a κ of 0.65, comparable to a κ of 0.60 corresponding to the human EEG/EMG-based scoring. CONCLUSIONS: The hybrid MVG-CNN method accurately classifies sleep states from WFCI data and will enable future sleep-focused studies with WFCI.


Subject(s)
Deep Learning , Sleep Stages , Animals , Calcium , Electroencephalography , Mice , Reproducibility of Results , Sleep/physiology , Sleep Stages/physiology , Wakefulness
19.
Mol Syst Biol ; 17(11): e10625, 2021 11.
Article in English | MEDLINE | ID: mdl-34816587

ABSTRACT

Plant metabolism is more complex relative to individual microbes. In single-celled microbes, transcriptional regulation by single transcription factors (TFs) is sufficient to shift primary metabolism. Corresponding genome-level transcriptional regulatory maps of metabolism reveal the underlying design principles responsible for these shifts as a model in which master regulators largely coordinate specific metabolic pathways. Plant primary and specialized metabolism occur within innumerable cell types, and their reactions shift depending on internal and external cues. Given the importance of plants and their metabolites in providing humanity with food, fiber, and medicine, we set out to develop a genome-scale transcriptional regulatory map of Arabidopsis metabolic genes. A comprehensive set of protein-DNA interactions between Arabidopsis thaliana TFs and gene promoters in primary and specialized metabolic pathways were mapped. To demonstrate the utility of this resource, we identified and functionally validated regulators of the tricarboxylic acid (TCA) cycle. The resulting network suggests that plant metabolic design principles are distinct from those of microbes. Instead, metabolism appears to be transcriptionally coordinated via developmental- and stress-conditional processes that can coordinate across primary and specialized metabolism. These data represent the most comprehensive resource of interactions between TFs and metabolic genes in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA , Gene Expression Regulation , Gene Expression Regulation, Plant , Gene Regulatory Networks , Transcription Factors/genetics , Transcription Factors/metabolism
20.
EMBO J ; 40(23): e103718, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34698396

ABSTRACT

Mixed lineage kinase domain-like (MLKL) is the executioner in the caspase-independent form of programmed cell death called necroptosis. Receptor-interacting serine/threonine protein kinase 3 (RIPK3) phosphorylates MLKL, triggering MLKL oligomerization, membrane translocation and membrane disruption. MLKL also undergoes ubiquitylation during necroptosis, yet neither the mechanism nor the significance of this event has been demonstrated. Here, we show that necroptosis-specific multi-mono-ubiquitylation of MLKL occurs following its activation and oligomerization. Ubiquitylated MLKL accumulates in a digitonin-insoluble cell fraction comprising organellar and plasma membranes and protein aggregates. Appearance of this ubiquitylated MLKL form can be reduced by expression of a plasma membrane-located deubiquitylating enzyme. Oligomerization-induced MLKL ubiquitylation occurs on at least four separate lysine residues and correlates with its proteasome- and lysosome-dependent turnover. Using a MLKL-DUB fusion strategy, we show that constitutive removal of ubiquitin from MLKL licences MLKL auto-activation independent of necroptosis signalling in mouse and human cells. Therefore, in addition to the role of ubiquitylation in the kinetic regulation of MLKL-induced death following an exogenous necroptotic stimulus, it also contributes to restraining basal levels of activated MLKL to avoid unwanted cell death.


Subject(s)
Cell Membrane/metabolism , Necroptosis , Protein Kinases/metabolism , Protein Kinases/physiology , Protein Multimerization , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Proteasome Endopeptidase Complex , Protein Kinases/chemistry , Protein Kinases/genetics , Ubiquitin Thiolesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL