Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Hum Genet ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578439

ABSTRACT

While carotid intima-media thickness (cIMT) as a noninvasive surrogate measure of atherosclerosis is widely considered a risk factor for stroke, the intrinsic link underlying cIMT and stroke has not been fully understood. We aimed to evaluate the clinical value of cIMT in stroke through the investigation of phenotypic and genetic relationships between cIMT and stroke. We evaluated phenotypic associations using observational data from UK Biobank (N = 21,526). We then investigated genetic relationships leveraging genomic data conducted in predominantly European ancestry for cIMT (N = 45,185) and any stroke (AS, Ncase/Ncontrol=40,585/406,111). Observational analyses suggested an increased hazard of stroke per one standard deviation increase in cIMT (cIMTmax-AS: hazard ratio (HR) = 1.39, 95%CI = 1.09-1.79; cIMTmean-AS: HR = 1.39, 95%CI = 1.09-1.78; cIMTmin-AS: HR = 1.32, 95%CI = 1.04-1.68). A positive global genetic correlation was observed (cIMTmax-AS: [Formula: see text]=0.23, P=9.44 × 10-5; cIMTmean-AS: [Formula: see text]=0.21, P=3.00 × 10-4; cIMTmin-AS: [Formula: see text]=0.16, P=6.30 × 10-3). This was further substantiated by five shared independent loci and 15 shared expression-trait associations. Mendelian randomization analyses suggested no causal effect of cIMT on stroke (cIMTmax-AS: odds ratio (OR)=1.12, 95%CI=0.97-1.28; cIMTmean-AS: OR=1.09, 95%CI=0.93-1.26; cIMTmin-AS: OR=1.03, 95%CI = 0.90-1.17). A putative association was observed for genetically predicted stroke on cIMT (AS-cIMTmax: beta=0.07, 95%CI = 0.01-0.13; AS-cIMTmean: beta=0.08, 95%CI = 0.01-0.15; AS-cIMTmin: beta = 0.08, 95%CI = 0.01-0.16) in the reverse direction MR, which attenuated to non-significant in sensitivity analysis. Our work does not find evidence supporting causal associations between cIMT and stroke. The pronounced cIMT-stroke association is intrinsic, and mostly attributed to shared genetic components. The clinical value of cIMT as a surrogate marker for stroke risk in the general population is likely limited.

2.
PLoS Med ; 21(3): e1004362, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489391

ABSTRACT

BACKGROUND: The incidence of prostate cancer is increasing in older males globally. Age, ethnicity, and family history are identified as the well-known risk factors for prostate cancer, but few modifiable factors have been firmly established. The objective of this study was to identify and evaluate various factors modifying the risk of prostate cancer reported in meta-analyses of prospective observational studies and mendelian randomization (MR) analyses. METHODS AND FINDINGS: We searched PubMed, Embase, and Web of Science from the inception to January 10, 2022, updated on September 9, 2023, to identify meta-analyses and MR studies on prostate cancer. Eligibility criteria for meta-analyses were (1) meta-analyses including prospective observational studies or studies that declared outcome-free at baseline; (2) evaluating the factors of any category associated with prostate cancer incidence; and (3) providing effect estimates for further data synthesis. Similar criteria were applied to MR studies. Meta-analysis was repeated using the random-effects inverse-variance model with DerSimonian-Laird method. Quality assessment was then conducted for included meta-analyses using AMSTAR-2 tool and for MR studies using STROBE-MR and assumption evaluation. Subsequent evidence grading criteria for significant associations in meta-analyses contained sample size, P values and 95% confidence intervals, 95% prediction intervals, heterogeneity, and publication bias, assigning 4 evidence grades (convincing, highly suggestive, suggestive, or weak). Significant associations in MR studies were graded as robust, probable, suggestive, or insufficient considering P values and concordance of effect directions. Finally, 92 selected from 411 meta-analyses and 64 selected from 118 MR studies were included after excluding the overlapping and outdated studies which were published earlier and contained fewer participants or fewer instrument variables for the same exposure. In total, 123 observational associations (45 significant and 78 null) and 145 causal associations (55 significant and 90 null) were categorized into lifestyle; diet and nutrition; anthropometric indices; biomarkers; clinical variables, diseases, and treatments; and environmental factors. Concerning evidence grading on significant associations, there were 5 highly suggestive, 36 suggestive, and 4 weak associations in meta-analyses, and 10 robust, 24 probable, 4 suggestive, and 17 insufficient causal associations in MR studies. Twenty-six overlapping factors between meta-analyses and MR studies were identified, with consistent significant effects found for physical activity (PA) (occupational PA in meta: OR = 0.87, 95% CI: 0.80, 0.94; accelerator-measured PA in MR: OR = 0.49, 95% CI: 0.33, 0.72), height (meta: OR = 1.09, 95% CI: 1.06, 1.12; MR: OR = 1.07, 95% CI: 1.01, 1.15, for aggressive prostate cancer), and smoking (current smoking in meta: OR = 0.74, 95% CI: 0.68, 0.80; smoking initiation in MR: OR = 0.91, 95% CI: 0.86, 0.97). Methodological limitation is that the evidence grading criteria could be expanded by considering more indices. CONCLUSIONS: In this large-scale study, we summarized the associations of various factors with prostate cancer risk and provided comparisons between observational associations by meta-analysis and genetically estimated causality by MR analyses. In the absence of convincing overlapping evidence based on the existing literature, no robust associations were identified, but some effects were observed for height, physical activity, and smoking.


Subject(s)
Mendelian Randomization Analysis , Prostatic Neoplasms , Male , Humans , Aged , Risk Factors , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Smoking/adverse effects , Tobacco Smoking , Observational Studies as Topic
3.
Huan Jing Ke Xue ; 45(2): 909-919, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471929

ABSTRACT

Based on the typical city survey data and statistics of Guangdong Province, a 2018-based 3 km×3 km gridded greenhouse gas emissions inventory was developed for Guangdong Province using the combination of top-down and bottom-up emission factor methods. The inventory covered the CO2, CH4, and N2O emissions from energy, industrial processes, agriculture, land use change and forest, waste management, and indirect sources. The results showed that estimates for CO2, CH4, and N2O in Guangdong Province for the year 2018 were 8.5×108, 1.9×106, and 1.1×105 t, respectively, and 8.5×108, 4.0×107, and 3.4×107 t by equivalent carbon dioxide, totaling 9.2×108 t. CO2 was the main greenhouse gas in Guangdong Province, accounting for 92.0% of the total emissions. Energy and indirect sources were the main emission sources, accounting for 77.9% and 7.6%, respectively, totaling 85.5%. Spatial distributions illustrated that most grids were greenhouse gas emissions, whereas some others were greenhouse gas sinks; the greenhouse gas emissions were distributed mainly in the Pearl River Delta region and had certain characteristics of distribution along the road network and channels. The greenhouse gas grids of high emission were mainly the locations of high energy-consuming enterprises such as large power plants, steel mills, and cement plants.

4.
Front Endocrinol (Lausanne) ; 15: 1367229, 2024.
Article in English | MEDLINE | ID: mdl-38529389

ABSTRACT

Background: General obesity is a well-established risk factor for gallstone disease (GSD), but whether central obesity contributes additional independent risk remains controversial. We aimed to comprehensively clarify the effect of body fat distribution on GSD. Methods: We first investigated the observational association of central adiposity, characterized by waist-to-hip ratio (WHR), with GSD risk using data from UK Biobank (N=472,050). We then explored the genetic relationship using summary statistics from the largest genome-wide association study of GSD (ncase=43,639, ncontrol=506,798) as well as WHR, with and without adjusting for body mass index (BMI) (WHR: n=697,734; WHRadjBMI: n=694,649). Results: Observational analysis demonstrated an increased risk of GSD with one unit increase in WHR (HR=1.18, 95%CI=1.14-1.21). A positive WHR-GSD genetic correlation (rg =0.41, P=1.42×10-52) was observed, driven by yet independent of BMI (WHRadjBMI: rg =0.19, P=6.89×10-16). Cross-trait meta-analysis identified four novel pleiotropic loci underlying WHR and GSD with biological mechanisms outside of BMI. Mendelian randomization confirmed a robust WHR-GSD causal relationship (OR=1.50, 95%CI=1.35-1.65) which attenuated yet remained significant after adjusting for BMI (OR=1.17, 95%CI=1.09-1.26). Furthermore, observational analysis confirmed a positive association between general obesity and GSD, corroborated by a shared genetic basis (rg =0.40, P=2.16×10-43), multiple novel pleiotropic loci (N=11) and a causal relationship (OR=1.67, 95%CI=1.56-1.78). Conclusion: Both observational and genetic analyses consistently provide evidence on an association of central obesity with an increased risk of GSD, independent of general obesity. Our work highlights the need of considering both general and central obesity in the clinical management of GSD.


Subject(s)
Cholelithiasis , Obesity, Abdominal , Humans , Adiposity/genetics , Genome-Wide Association Study , Obesity/complications , Obesity/genetics , Obesity, Abdominal/complications , Obesity, Abdominal/genetics
5.
Chin Med J (Engl) ; 137(5): 577-587, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38062574

ABSTRACT

BACKGROUND: While type 2 diabetes mellitus (T2DM) is considered a putative causal risk factor for coronary artery disease (CAD), the intrinsic link underlying T2DM and CAD is not fully understood. We aimed to highlight the importance of integrated care targeting both diseases by investigating the phenotypic and genetic relationships between T2DM and CAD. METHODS: We evaluated phenotypic associations using data from the United Kingdom Biobank ( N = 472,050). We investigated genetic relationships by leveraging genomic data conducted in European ancestry for T2DM, with and without adjustment for body mass index (BMI) (T2DM: Ncase / Ncontrol = 74,124/824,006; T2DM adjusted for BMI [T2DM adj BMI]: Ncase / Ncontrol = 50,409/523,897) and for CAD ( Ncase / Ncontrol = 181,522/984,168). We performed additional analyses using genomic data conducted in multiancestry individuals for T2DM ( Ncase / Ncontrol = 180,834/1,159,055). RESULTS: Observational analysis suggested a bidirectional relationship between T2DM and CAD (T2DM→CAD: hazard ratio [HR] = 2.12, 95% confidence interval [CI]: 2.01-2.24; CAD→T2DM: HR = 1.72, 95% CI: 1.63-1.81). A positive overall genetic correlation between T2DM and CAD was observed ( rg = 0.39, P = 1.43 × 10 -75 ), which was largely independent of BMI (T2DM adj BMI-CAD: rg = 0.31, P = 1.20 × 10 -36 ). This was corroborated by six local signals, among which 9p21.3 showed the strongest genetic correlation. Cross-trait meta-analysis replicated 101 previously reported loci and discovered six novel pleiotropic loci. Mendelian randomization analysis supported a bidirectional causal relationship (T2DM→CAD: odds ratio [OR] = 1.13, 95% CI: 1.11-1.16; CAD→T2DM: OR = 1.12, 95% CI: 1.07-1.18), which was confirmed in multiancestry individuals (T2DM→CAD: OR = 1.13, 95% CI: 1.10-1.16; CAD→T2DM: OR = 1.08, 95% CI: 1.04-1.13). This bidirectional relationship was significantly mediated by systolic blood pressure and intake of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, with mediation proportions of 54.1% (95% CI: 24.9-83.4%) and 90.4% (95% CI: 29.3-151.5%), respectively. CONCLUSION: Our observational and genetic analyses demonstrated an intrinsic bidirectional relationship between T2DM and CAD and clarified the biological mechanisms underlying this relationship.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Prospective Studies , Risk Factors , Phenotype , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics
6.
Schizophr Bull ; 50(2): 317-326, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37467357

ABSTRACT

BACKGROUND AND HYPOTHESIS: While the phenotypic association between schizophrenia and breast cancer has been observed, the underlying intrinsic link is not adequately understood. We aim to conduct a comprehensive interrogation on both phenotypic and genetic relationships between schizophrenia and breast cancer. STUDY DESIGN: We first used data from UK Biobank to evaluate a phenotypic association and performed an updated meta-analysis incorporating existing cohort studies. We then leveraged genomic data to explore the shared genetic architecture through a genome-wide cross-trait design. STUDY RESULTS: Incorporating results of our observational analysis, meta-analysis of cohort studies suggested a significantly increased incidence of breast cancer among women with schizophrenia (RR = 1.30, 95% CIs = 1.14-1.48). A positive genomic correlation between schizophrenia and overall breast cancer was observed (rg = 0.12, P = 1.80 × 10-10), consistent across ER+ (rg  = 0.10, P = 5.74 × 10-7) and ER- subtypes (rg = 0.09, P = .003). This was further corroborated by four local signals. Cross-trait meta-analysis identified 23 pleiotropic loci between schizophrenia and breast cancer, including five novel loci. Gene-based analysis revealed 27 shared genes. Mendelian randomization demonstrated a significantly increased risk of overall breast cancer (OR = 1.07, P = 4.81 × 10-10) for genetically predisposed schizophrenia, which remained robust in subgroup analysis (ER+: OR = 1.10, P = 7.26 × 10-12; ER-: OR = 1.08, P = 3.50 × 10-6). No mediation effect and reverse causality was found. CONCLUSIONS: Our study demonstrates an intrinsic link underlying schizophrenia and breast cancer, which may inform tailored screening and management of breast cancer in schizophrenia.


Subject(s)
Breast Neoplasms , Schizophrenia , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Schizophrenia/epidemiology , Schizophrenia/genetics , Schizophrenia/diagnosis , Genetic Predisposition to Disease , Incidence , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis , Genome-Wide Association Study , Observational Studies as Topic
7.
J Affect Disord ; 348: 62-69, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38123074

ABSTRACT

BACKGROUND: While the association between depression and hypertension has been extensively investigated, the pattern and nature of such association remain inconclusive. We sought to investigate the bidirectional relationship between depression and hypertension and its causal. METHODS: We first performed observational analyses using longitudinal data from the UK Biobank. We then performed genetic analyses leveraging summary statistics from large-scale genome-wide association studies (GWASs) conducted in European ancestry for depression and hypertension. RESULTS: Observational analysis suggested a significant bidirectional phenotypic association between depression and hypertension (Depression â†’ Hypertension: HR = 1.27, 95 % CI: 1.19, 1.36; Hypertension â†’ Depression: HR = 1.65, 95 % CI: 1.58, 1.72). Linkage disequilibrium score regression demonstrated a positive genetic correlation between the two conditions (rg=0.15, P = 5.75 × 10-10). Bidirectional two-sample Mendelian randomization (MR) suggested that genetic liability to depression was significantly associated with an increased risk of hypertension (OR = 1.27, 95 % CI: 1.12, 1.43), while the genetic liability to hypertension was not associated with the risk of depression (OR = 1.01, 95 % CI: 0.99, 1.03). Multivariate MR, after adjusting for smoking, drinking, and body mass index, further supported an independent causal effect of genetic liability to depression on hypertension risk (OR = 1.10, 95 % CI: 1.02, 1.18). LIMITATIONS: (1) interference of confounders, (2) absence of adequate statistical power, and (3) limitation to European populations. CONCLUSION: Our study indicates depression is a causal risk factor for hypertension, whereas the reverse maybe not. Findings support that prevention of depression might help in decreasing hypertension incidence.


Subject(s)
Depression , Hypertension , Humans , Depression/epidemiology , Depression/genetics , Genome-Wide Association Study , Body Mass Index , Hypertension/epidemiology , Hypertension/genetics , Linkage Disequilibrium , Mendelian Randomization Analysis
8.
Front Plant Sci ; 14: 1279502, 2023.
Article in English | MEDLINE | ID: mdl-37941661

ABSTRACT

Plant defensins are widely distributed in the leaves, fruits, roots, stems, seeds, and tubers. Research shows that defensin in plants play a significant role in physiological metabolism, growth and development. Plant defensins can kill and suppress a variety of pathogenic bacteria. In this study, we understand the phylogenetic relationships, protein characterization, chromosomal localization, promoter and gene structural features of the TaPDFs family through sequence alignment and conserved protein structural domain analysis. A total of 73 PDF gene members in wheat, 15 PDF genes in maize, and 11 PDF genes in rice were identified. A total of 35, 65, and 34 PDF gene members were identified in the genomes of Ae. tauschii, T. urartu, and T. dicoccoides, respectively. TaPDF4.9 and TaPDF2.15 were constructed into pART27 vector with YFP by homologous recombination for subcellular localization analysis. Subcellular localization results showed that TaPDF4.9 and TaPDF2.15 were basically located in the cell membrane and cytoplasm, and TaPDF4.9 was also located in the nucleus. TaPDF4.9 and TaPDF2.15 could inhibit the infection of Phytophthora infestans strain '88069'. The results suggest that TaPDFs may be able to improve disease resistance. The study of wheat defensins will be beneficial for improving wheat yield and provides a theoretical basis for research on resistance to wheat diseases.

9.
Front Immunol ; 14: 1217444, 2023.
Article in English | MEDLINE | ID: mdl-37662938

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has exerted a profound influence on humans. Increasing evidence shows that immune response is crucial in influencing the risk of infection and disease severity. Observational studies suggest an association between COVID-19 and immunoglobulin G (IgG) N-glycosylation traits, but the causal relevance of these traits in COVID-19 susceptibility and severity remains controversial. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to explore the causal association between 77 IgG N-glycosylation traits and COVID-19 susceptibility, hospitalization, and severity using summary-level data from genome-wide association studies (GWAS) and applying multiple methods including inverse-variance weighting (IVW), MR Egger, and weighted median. We also used Cochran's Q statistic and leave-one-out analysis to detect heterogeneity across each single nucleotide polymorphism (SNP). Additionally, we used the MR-Egger intercept test, MR-PRESSO global test, and PhenoScanner tool to detect and remove SNPs with horizontal pleiotropy and to ensure the reliability of our results. Results: We found significant causal associations between genetically predicted IgG N-glycosylation traits and COVID-19 susceptibility, hospitalization, and severity. Specifically, we observed reduced risk of COVID-19 with the genetically predicted increased IgG N-glycan trait IGP45 (OR = 0.95, 95% CI = 0.92-0.98; FDR = 0.019). IGP22 and IGP30 were associated with a higher risk of COVID-19 hospitalization and severity. Two (IGP2 and IGP77) and five (IGP10, IGP14, IGP34, IGP36, and IGP50) IgG N-glycosylation traits were causally associated with a decreased risk of COVID-19 hospitalization and severity, respectively. Sensitivity analyses did not identify any horizontal pleiotropy. Conclusions: Our study provides evidence that genetically elevated IgG N-glycosylation traits may have a causal effect on diverse COVID-19 outcomes. Our findings have potential implications for developing targeted interventions to improve COVID-19 outcomes by modulating IgG N-glycosylation levels.


Subject(s)
COVID-19 , Humans , Glycosylation , COVID-19/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Immunoglobulin G
10.
J Transl Med ; 21(1): 671, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37759214

ABSTRACT

BACKGROUND: This study aims to comprehensively investigate the phenotypic and genetic relationships between four common lipids (high-density lipoprotein cholesterol, HDL-C; low-density lipoprotein cholesterol, LDL-C; total cholesterol, TC; and triglycerides, TG), chronic kidney disease (CKD), and estimated glomerular filtration rate (eGFR). METHODS: We first investigated the observational association of lipids (exposures) with CKD (primary outcome) and eGFR (secondary outcome) using data from UK Biobank. We then explored the genetic relationship using summary statistics from the largest genome-wide association study of four lipids (N = 1,320,016), CKD (Ncase = 41,395, Ncontrol = 439,303), and eGFR(N = 567,460). RESULTS: There were significant phenotypic associations (HDL-C: hazard ratio (HR) = 0.76, 95%CI = 0.60-0.95; TG: HR = 1.08, 95%CI = 1.02-1.13) and global genetic correlations (HDL-C: [Formula: see text] = - 0.132, P = 1.00 × 10-4; TG: [Formula: see text] = 0.176; P = 2.66 × 10-5) between HDL-C, TG, and CKD risk. Partitioning the whole genome into 2353 LD-independent regions, twelve significant regions were observed for four lipids and CKD. The shared genetic basis was largely explained by 29 pleiotropic loci and 36 shared gene-tissue pairs. Mendelian randomization revealed an independent causal relationship of genetically predicted HDL-C (odds ratio = 0.91, 95%CI = 0.85-0.98), but not for LDL-C, TC, or TG, with the risk of CKD. Regarding eGFR, a similar pattern of correlation and pleiotropy was observed. CONCLUSIONS: Our work demonstrates a putative causal role of HDL-C in CKD and a significant biological pleiotropy underlying lipids and CKD in populations of European ancestry. Management of low HDL-C levels could potentially benefit in reducing the long-term risk of CKD.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Humans , Prospective Studies , Cholesterol, HDL , Cholesterol, LDL , Renal Insufficiency, Chronic/genetics
11.
BMC Med ; 21(1): 353, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37705021

ABSTRACT

BACKGROUND: Despite epidemiological evidence associating gallstone disease (GSD) with cardiovascular disease (CVD), a dilemma remains on the role of cholecystectomy in modifying the risk of CVD. We aimed to characterize the phenotypic and genetic relationships between GSD and two CVD events - stroke and coronary artery disease (CAD). METHODS: We first performed a meta-analysis of cohort studies to quantify an overall phenotypic association between GSD and CVD. We then investigated the genetic relationship leveraging the largest genome-wide genetic summary statistics. We finally examined the phenotypic association using the comprehensive data from UK Biobank (UKB). RESULTS: An overall significant effect of GSD on CVD was found in meta-analysis (relative risk [RR] = 1.26, 95% confidence interval [CI] = 1.19-1.34). Genetically, a positive shared genetic basis was observed for GSD with stroke ([Formula: see text]=0.16, P = 6.00 × 10-4) and CAD ([Formula: see text]=0.27, P = 2.27 × 10-15), corroborated by local signals. The shared genetic architecture was largely explained by the multiple pleiotropic loci identified in cross-phenotype association study and the shared gene-tissue pairs detected by transcriptome-wide association study, but not a causal relationship (GSD to CVD) examined through Mendelian randomization (MR) (GSD-stroke: odds ratio [OR] = 1.00, 95%CI = 0.97-1.03; GSD-CAD: OR = 1.01, 95%CI = 0.98-1.04). After a careful adjustment of confounders or considering lag time using UKB data, no significant phenotypic effect of GSD on CVD was detected (GSD-stroke: hazard ratio [HR] = 0.95, 95%CI = 0.83-1.09; GSD-CAD: HR = 0.98, 95%CI = 0.91-1.06), further supporting MR findings. CONCLUSIONS: Our work demonstrates a phenotypic and genetic relationship between GSD and CVD, highlighting a shared biological mechanism rather than a direct causal effect. These findings may provide insight into clinical and public health applications.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Stroke , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Prospective Studies , Odds Ratio , Stroke/epidemiology , Stroke/genetics , Observational Studies as Topic
12.
Diabetes ; 72(11): 1671-1681, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37552871

ABSTRACT

While type 2 diabetes mellitus (T2DM) is commonly considered a putative causal risk factor for stroke, the effect of stroke on T2DM remains unclear. The intrinsic link underlying T2DM and stroke has not been thoroughly examined. We aimed to evaluate the phenotypic and genetic relationships underlying T2DM and stroke. We evaluated phenotypic associations using data from the UK Biobank (N = 472,050). We then investigated genetic relationships by leveraging genomic data in European ancestry for T2DM, with and without adjusting (adj) for BMI (T2DM: n = 74,124 case subjects/824,006 control subjects; T2DMadjBMI: n = 50,409 case subjects/523,897 control subjects), and for stroke (n = 73,652 case subjects/1,234,808 control subjects). We performed additional analyses using genomic data in East Asian ancestry for T2DM (n = 77,418 case subjects/356,122 control subjects) and for stroke (n = 27,413 case subjects/237,242 control subjects). Observational analyses suggested a significantly increased hazard of stroke among individuals with T2DM (hazard ratio 2.28 [95% CI 1.97-2.64]), but a slightly increased hazard of T2DM among individuals with stroke (1.22 [1.03-1.45]) which attenuated to 1.14 (0.96-1.36) in sensitivity analysis. A positive global T2DM-stroke genetic correlation was observed (rg = 0.35; P = 1.46 × 10-27), largely independent of BMI (T2DMadjBMI-stroke: rg = 0.27; P = 3.59 × 10-13). This was further corroborated by 38 shared independent loci and 161 shared expression-trait associations. Mendelian randomization analyses suggested a putative causal effect of T2DM on stroke in Europeans (odds ratio 1.07 [95% CI 1.06-1.09]), which remained significant in East Asians (1.03 [1.01-1.06]). Conversely, despite a putative causal effect of stroke on T2DM also observed in Europeans (1.21 [1.07-1.37]), it attenuated to 1.04 (0.91-1.19) in East Asians. Our study provides additional evidence to underscore the significant relationship between T2DM and stroke.

13.
Front Plant Sci ; 14: 1210632, 2023.
Article in English | MEDLINE | ID: mdl-37476177

ABSTRACT

L-aspartate oxidase (AO) is the first enzyme in NAD+ biosynthesis and is widely distributed in plants, animals, and microorganisms. Recently, AO family members have been reported in several plants, including Arabidopsis thaliana and Zea mays. Research on AO in these plants has revealed that AO plays important roles in plant growth, development, and biotic stresses; however, the nature and functions of AO proteins in wheat are still unclear. In this study, nine AO genes were identified in the wheat genome via sequence alignment and conserved protein domain analysis. These nine wheat AO genes (TaAOs) were distributed on chromosomes 2, 5, and 6 of sub-genomes A, B, and D. Analysis of the phylogenetic relationships, conserved motifs, and gene structure showed that the nine TaAOs were clustered into three groups, and the TaAOs in each group had similar conserved motifs and gene structure. Meanwhile, the subcellular localization analysis of transient expression mediated by Agrobacterium tumetioniens indicated that TaAO3-6D was localized to chloroplasts. Prediction of cis-elements indicated that a large number of cis-elements involved in responses to ABA, SA, and antioxidants/electrophiles, as well as photoregulatory responses, were found in TaAO promoters, which suggests that the expression of TaAOs may be regulated by these factors. Finally, transcriptome and real-time PCR analysis showed that the expression of TaAOs belonging to Group III was strongly induced in wheat infected by F. graminearum during anthesis, while the expression of TaAOs belonging to Group I was heavily suppressed. Additionally, the inducible expression of TaAOs belonging to Group III during anthesis in wheat spikelets infected by F. graminearum was repressed by ABA. Finally, expression of almost all TaAOs was induced by exposure to cold treatment. These results indicate that TaAOs may participate in the response of wheat to F. graminearum infection and cold stress, and ABA may play a negative role in this process. This study lays a foundation for further investigation of TaAO genes and provides novel insights into their biological functions.

14.
Hum Genet ; 142(8): 1185-1200, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37306871

ABSTRACT

Epidemiological studies demonstrate an association between migraine and chronic kidney disease (CKD), while the genetic basis underlying the phenotypic association has not been investigated. We aimed to help avoid unnecessary interventions in individuals with migraine through the investigation of phenotypic and genetic relationships underlying migraine, CKD, and kidney function. We first evaluated phenotypic associations using observational data from UK Biobank (N = 255,896). We then investigated genetic relationships leveraging genomic data in European ancestry for migraine (Ncase/Ncontrol = 48,975/540,381), CKD (Ncase/Ncontrol = 41,395/439,303), and two traits of kidney function (estimated glomerular filtration rate [eGFR, N = 567,460] and urinary albumin-to-creatinine ratio [UACR, N = 547,361]). Observational analyses suggested no significant association of migraine with the risk of CKD (HR = 1.13, 95% CI = 0.85-1.50). While we did not find any global genetic correlation in general, we identified four specific genomic regions showing significant for migraine with eGFR. Cross-trait meta-analysis identified one candidate causal variant (rs1047891) underlying migraine, CKD, and kidney function. Transcriptome-wide association study detected 28 shared expression-trait associations between migraine and kidney function. Mendelian randomization analysis suggested no causal effect of migraine on CKD (OR = 1.03, 95% CI = 0.98-1.09; P = 0.28). Despite a putative causal effect of migraine on an increased level of UACR (log-scale-beta = 0.02, 95% CI = 0.01-0.04; P = 1.92 × 10-3), it attenuated to null when accounting for both correlated and uncorrelated pleiotropy. Our work does not find evidence supporting a causal association between migraine and CKD. However, our study highlights significant biological pleiotropy between migraine and kidney function. The value of a migraine prophylactic treatment for reducing future CKD in people with migraine is likely limited.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Humans , Causality , Glomerular Filtration Rate/genetics , Kidney , Mendelian Randomization Analysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
15.
J Sleep Res ; : e13973, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380357

ABSTRACT

Little is known regarding the shared genetic influences underlying the observed phenotypic association between chronotype and breast cancer in women. Leveraging summary statistics from the hitherto largest genome-wide association study conducted in each trait, we investigated the genetic correlation, pleiotropic loci, and causal relationship of chronotype with overall breast cancer, and with its subtypes defined by the status of oestrogen receptor. We identified a negative genomic correlation between chronotype and overall breast cancer ( r g $$ {r}_g $$ = -0.06, p = 3.00 × 10-4 ), consistent across oestrogen receptor-positive ( r g $$ {r}_g $$ = -0.05, p = 3.30 × 10-3 ) and oestrogen receptor-negative subtypes ( r g $$ {r}_g $$ = -0.05, p = 1.11 × 10-2 ). Five specific genomic regions were further identified as contributing a significant local genetic correlation. Cross-trait meta-analysis identified 78 loci shared between chronotype and breast cancer, of which 23 were novel. Transcriptome-wide association study revealed 13 shared genes, targeting tissues of the nervous, cardiovascular, digestive, and exocrine/endocrine systems. Mendelian randomisation demonstrated a significantly reduced risk of overall breast cancer (odds ratio 0.89, 95% confidence interval 0.83-0.94; p = 1.30 × 10-4 ) for genetically predicted morning chronotype. No reverse causality was found. Our work demonstrates an intrinsic link underlying chronotype and breast cancer, which may provide clues to inform management of sleep habits to improve female health.

16.
Breast Cancer Res Treat ; 200(1): 115-126, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37162625

ABSTRACT

PURPOSE: While crudely quantified lipoproteins have been reported to affect the risk of breast cancer, the effects of subclass lipoproteins characterized by particle size, particle number, and lipidomes remain unknown. METHODS: Utilizing nuclear magnetic resonance-based GWAS of 85 lipoprotein traits, we performed two-sample univariable Mendelian randomization (MR) to evaluate the causal relationship between each trait with breast cancer (Ncase/control = 133,384/113,789) and with its estrogen receptor (ER) subtypes. Then, we applied multivariable MR to investigate the independent effects considering both general and central obesity. RESULTS: In univariable MR, a heterogeneous effect of subclass high-density lipoproteins (HDL) was observed, in which small HDL traits (ORs ranged from 0.89 to 0.94) were associated with a decreased risk of breast cancer while non-small HDLs traits (OR ranged from 1.04 to 1.08) were associated with an increased risk of breast cancer. Very-low-density lipoproteins (VLDL) traits and serum total triglycerides (TG) were associated with a decreased risk of breast cancer (ORs ranged from 0.88 to 0.94). Similar association patterns were found for ER + subtype. In multivariable MR, only the protective effects of small HDL, VLDL and TG on ER + subtype remained significant. CONCLUSION: We identified a heterogeneous effect of subclass HDLs and a consistent protective effect of VLDL on breast cancer. Only the effects of small HDL and VLDL on ER + subtype remained robust after controlling for obesity. These findings provide new insight into the causal pathway underlying lipoproteins and breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Mendelian Randomization Analysis , Lipoproteins/genetics , Lipoproteins, HDL , Lipoproteins, VLDL , Triglycerides , Magnetic Resonance Spectroscopy , Obesity
17.
Int J Cancer ; 153(2): 320-330, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37074298

ABSTRACT

To comprehensively evaluate the etiological role of ABO blood group in human cancer, we conducted a large-scale meta-analysis of 127 publications totaling 20 million participants including 231 737 patients of 20 cancers, supplemented by genetic evidence. Effects of A, AB and B groups on cancer risk were investigated by respectively comparing with O group and their combined counterparts, and subgroup analysis by ethnicity was conducted for O-referent models. For cancer categories, A group increased risk of cancers of oral cavity and nasopharynx, digestive and female genital organs, while both AB and B groups showed associations with cancers of digestive and female genital organs. For individual cancers, A group significantly increased the risk of nine cancers including oral cavity (OR = 1.17, P = .013), stomach (OR = 1.19, P = 3.90 × 10-15 ), pancreas (OR = 1.33, P = 9.89 × 10-33 ), colorectum (OR = 1.09, P = .001), liver (OR = 1.23, P = .011), ovary (OR = 1.13, P = .001), cervix (OR = 1.17, P = .025), bladder (OR = 1.12, P = .025) and breast (OR = 1.06, P = .043). AB group showed associations with only three cancers: stomach (OR = 1.10, P = .007), pancreas (OR = 1.21, P = .001) and ovary (OR = 1.28, P = .006). B group, except for shared associations with A group on pancreas (OR = 1.20, P = 2.27 × 10-5 ) and cervix cancers (OR = 1.13, P = .011), had two distinct associations with esophagus (OR = 1.17, P = .002) and nonmelanoma skin cancers (OR = 0.96, P = .017). Ethnicity-specific analyses revealed the notable effects of non-O groups on pancreatic cancer both in Caucasians and Asians. In genetic analysis, four SNPs were associated with the risk of pancreatic cancer, with rs505922 corresponding to O group showing the strongest protective effect (P = 1.16 × 10-23 ). Our study provided comprehensive evidence of ABO blood group associated with cancers and highlighted its carcinogenic role.


Subject(s)
ABO Blood-Group System , Pancreatic Neoplasms , Humans , Female , ABO Blood-Group System/genetics , Pancreatic Neoplasms/genetics , Risk , Pancreatic Neoplasms
18.
Rheumatology (Oxford) ; 62(10): 3280-3290, 2023 10 03.
Article in English | MEDLINE | ID: mdl-36734534

ABSTRACT

OBJECTIVES: We aimed to clarify the genetic overlaps underlying obesity-related traits, serum urate, and gout. METHODS: We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci, and causal relationships between obesity (the exposure variable), gout (the primary outcome) and serum urate (the secondary outcome). Summary statistics were collected from the hitherto largest genome-wide association studies conducted for BMI (N = 806 834), waist-to-hip ratio (WHR; N = 697 734), WHR adjusted for BMI (WHRadjBMI; N = 694 649), serum urate (N = 288 649), and gout (Ncases = 13 179 and Ncontrols = 750 634). RESULTS: Positive overall genetic correlations were observed for BMI (rg = 0.27, P = 6.62 × 10-7), WHR (rg = 0.22, P = 6.26 × 10-7) and WHRadjBMI (rg = 0.07, P = 6.08 × 10-3) with gout. Partitioning the whole genome into 1703 LD (linkage disequilibrium)-independent regions, a significant local signal at 4q22 was identified for BMI and gout. The global and local shared genetic basis was further strengthened by the multiple pleiotropic loci identified in the cross-phenotype association study, multiple shared gene-tissue pairs observed by Transcriptome-wide association studies, as well as causal relationships demonstrated by Mendelian randomization [BMI-gout: OR (odds ratio) = 1.66, 95% CI = 1.45, 1.88; WHR-gout: OR = 1.57, 95% CI = 1.37, 1.81]. Replacing the binary disease status of gout with its latent pathological measure, serum urate, a similar pattern of correlation, pleiotropy and causality was observed with even more pronounced magnitude and significance. CONCLUSION: Our comprehensive genome-wide cross-trait analysis demonstrates a shared genetic basis and pleiotropic loci, as well as a causal relationship between obesity, serum urate, and gout, highlighting an intrinsic link underlying these complex traits.


Subject(s)
Gout , Uric Acid , Humans , Genome-Wide Association Study , Gout/epidemiology , Gout/genetics , Obesity/epidemiology , Obesity/genetics , Human Genetics , Polymorphism, Single Nucleotide
19.
Front Endocrinol (Lausanne) ; 14: 1337071, 2023.
Article in English | MEDLINE | ID: mdl-38356679

ABSTRACT

Background: The relationship between type 2 diabetes mellitus (T2DM) and gallstone disease (GSD) have been incompletely understood. We aimed to investigate their phenotypic and genetic associations and evaluate the biological mechanisms underlying these associations. Methods: We first evaluated the phenotypic association between T2DM and GSD using data from the UK Biobank (n>450,000) using a prospective observational design. We then conducted genetic analyses using summary statistics from a meta-analysis of genome-wide association studies of T2DM, with and without adjusting for body mass index (BMI) (Ncase=74,124, Ncontrol=824,006; T2DMadjBMI: Ncase=50,409, Ncontrol=523,897) and GSD (Ncase=43,639, Ncontrol=506,798). Results: A unidirectional phenotypic association was observed, where individuals with T2DM exhibited a higher GSD risk (hazard ratio (HR)=1.39, P<0.001), but not in the reverse direction (GSD→T2DM: HR=1.00, P=0.912). The positive T2DM-GSD genetic correlation (rg=0.35, P=7.71×10-23) remained even after adjusting for BMI (T2DMadjBMI: rg=0.22, P=4.48×10-10). Mendelian randomization analyses provided evidence of a unidirectional causal relationship (T2DM→GSD: odds ratio (OR)=1.08, P=4.6×10-8; GSD→T2DM: OR=1.02, P=0.48), even after adjusting for important metabolic confounders (OR=1.02, P=0.02). This association was further corroborated through a comprehensive functional analysis reflected by 23 pleiotropic single nucleotide polymorphisms, as well as multiple neural and motor-enriched tissues. Conclusion: Through comprehensive observational and genetic analyses, our study clarified the causal relationship between T2DM and GSD, but not in the reverse direction. These findings might provide new insights into prevention and treatment strategies for T2DM and GSD.


Subject(s)
Diabetes Mellitus, Type 2 , Gallstones , Humans , Body Mass Index , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Gallstones/epidemiology , Gallstones/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis
20.
Front Nutr ; 9: 940689, 2022.
Article in English | MEDLINE | ID: mdl-36299995

ABSTRACT

Background: Previous studies have suggested associations between addictive behavior and gallstone disease (GSD) risk, yet conflicting results exist. It also remains unclear whether this association is causal or due to confounding or reverse associations. The present study aims to systematically analyze the epidemiological evidence for these associations, as well as estimate the potential causal relationships using Mendelian randomization (MR). Methods: We analyzed four common addictive behaviors, including cigarette smoking, alcohol intake, coffee, and tea consumption (N = 126,906-4,584,729 participants) in this meta-analysis based on longitudinal studies. The two-sample MR was conducted using summary data from genome-wide associations with European ancestry (up to 1.2 million individuals). Results: An observational association of GSD risk was identified for smoking [RR: 1.17 (95% CI: 1.06-1.29)], drinking alcohol [0.84 (0.78-0.91)], consuming coffee [0.86 (0.79-0.93)], and tea [1.08 (1.04-1.12)]. Also, there was a linear relationship between smoking (pack-years), alcohol drinking (days per week), coffee consumption (cups per day), and GSD risk. Our MRs supported a causality of GSD incidence with lifetime smoking [1.008 (1.003-1.013), P = 0.001], current smoking [1.007 (1.002-1.011), P = 0.004], problematic alcohol use (PAU) [1.014 (1.001-1.026), P = 0.029], decaffeinated coffee intake (1.127 [1.043-1.217], P = 0.002), as well as caffeine-metabolism [0.997 (0.995-0.999), P = 0.013], and tea consumption [0.990 (0.982-0.997), P = 0.008], respectively. Conclusion: Our study suggests cigarette smoking, alcohol abuse, and decaffeinated coffee are causal risk factors for GSD, whereas tea consumption can decrease the risk of gallstones due to the effect of caffeine metabolism or polyphenol intake.

SELECTION OF CITATIONS
SEARCH DETAIL
...