Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Chem Asian J ; : e202400447, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738448

ABSTRACT

The In-based double perovskite halides have been widely studied for promising optical-electric applications. The halide hexagonal perovskite Cs2LiInCl6 was isolated using solid-state reactions and investigated using X-ray diffraction and solid-state NMR spectra. The material adopts a 12-layered hexagonal structure (12R) consisting of layered cationic orders driven by the cationic charge difference and has Li+ cations in the terminal site and In3+ in the central site of face-shared octahedron trimers. Such a cationic ordering pattern is stabilized by electrostatic repulsions between the next-nearest neighboring cations in the trimers. The LiCl6 octahedron displays large distortion and is confirmed by 7Li SSNMR in the Cs2LiInCl6. The Cs2LiInCl6 material has a direct bandgap of ~ 4.98 eV. The Cs2LiInCl6: Mn displays redshift luminescence (centered at ~610 - 622 nm) from the substituted Mn2+ emission in octahedron with larger PLQY (17.8%-48%) compared with that of Cs2NaInCl6: Mn2+.  The Mn-doped materials show luminescent concentration quenching and thermal quenching. The composition Cs2Li0.99In0.99Mn0.02Cl6 exhibits the highest PL intensity, a maximum PLQY of 48%, and high luminescent retention rate of ~ 86% below 400 K and is suitable for application for pc-LED. These findings contribute to our understanding of the chloride perovskites and hold potential for widespread optical applications.

2.
Chem Sci ; 15(11): 3988-3995, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487237

ABSTRACT

Na3Zr2Si2PO12 has been proven to be a promising electrolyte for solid-state sodium batteries. However, its poor conductivity prevents application, caused by the large ionic resistance created by the grain boundary. Herein, we propose an additional glass phase (Na-Ga-Si-P-O phase) to connect the grain boundary via Ga ion introduction, resulting in enhanced sodium-ion conduction and electrochemical performance. The optimized Na3Zr2Si2PO12-0.15Ga electrolyte exhibits Na+ conductivity of 1.65 mS cm-1 at room temperature and a low activation energy of 0.16 eV, with 20% newly formed glass phase enclosing the grain boundary. Temperature-dependent NMR line shapes and spin-lattice relaxation were used to estimate the Na self-diffusion and Na ion hopping. The dense glass-ceramic electrolyte design strategy and the structure-dynamics-property correlation from NMR, can be extended to the optimization of other materials.

3.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38314720

ABSTRACT

Solid-state Li metal batteries (SSLMBs) are widely investigated since they possess promising energy density and high safety. However, the poor interfacial compatibility between the electrolyte and electrodes limits their promising development. Herein, a robust composite electrolyte (poly(vinyl ethylene carbonate) electrolyte with 3 wt % of BaTiO3, PVEC-3BTO) with excellent interfacial performance is rationally designed by incorporating ferroelectric BaTiO3 (BTO) nanoparticles into the poly(vinyl ethylene carbonate) (PVEC) electrolyte matrix. Benefiting from the high dielectric constant and ferroelectric properties of BTO, the interfacial compatibility between electrolytes and electrodes was significantly improved. The enhanced Li+ transference number (0.64) of solid electrolyte and in situ generated BaF2 inorganic interphase contribute to the enhanced cycling stability of PVEC-3BTO based Li//Li symmetrical batteries. Furthermore, the antioxidation ability of PVEC-3BTO has also been enhanced by modulating the local electric field for good pairing with high-voltage LiCoO2 material. Therefore, in this work, the mechanism of BTO for improving interfacial compatibility is revealed, and also useful methods for addressing the interface issues of SSLMBs have been provided.

4.
Angew Chem Int Ed Engl ; 63(8): e202316957, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38168896

ABSTRACT

Mixed-anion-group Fe-based phosphate materials, such as Na4 Fe3 (PO4 )2 P2 O7 , have emerged as promising cathode materials for sodium-ion batteries (SIBs). However, the synthesis of pure-phase material has remained a challenge, and the phase evolution during sodium (de)intercalation is debating as well. Herein, a solid-solution strategy is proposed to partition Na4 Fe3 (PO4 )2 P2 O7 into 2NaFePO4 ⋅ Na2 FeP2 O7 from the angle of molecular composition. Via regulating the starting ratio of NaFePO4 and Na2 FeP2 O7 during the synthesis process, the nonstoichiometric pure-phase material could be successfully synthesized within a narrow NaFePO4 content between 1.6 and 1.2. Furthermore, the proposed synthesis strategy demonstrates strong applicability that helps to address the impurity issue of Na4 Co3 (PO4 )2 P2 O7 and nonstoichiometric Na3.4 Co2.4 (PO4 )1.4 P2 O7 are evidenced to be the pure phase. The model Na3.4 Fe2.4 (PO4 )1.4 P2 O7 cathode (the content of NaFePO4 equals 1.4) demonstrates exceptional sodium storage performances, including ultrahigh rate capability under 100 C and ultralong cycle life over 14000 cycles. Furthermore, combined measurements of ex situ nuclear magnetic resonance, in situ synchrotron radiation diffraction and X-ray absorption spectroscopy clearly reveal a two-phase transition during Na+ extraction/insertion, which provides a new insight into the ionic storage process for such kind of mixed-anion-group Fe-based phosphate materials and pave the way for the development of high-power sodium-ion batteries.

5.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109256

ABSTRACT

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

6.
Nat Commun ; 14(1): 6501, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845205

ABSTRACT

Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline Na5SmSi4O12 SE which features high room-temperature ionic conductivity of 2.9 × 10-3 S cm-1 and a low activation energy of 0.15 eV. All-solid-state symmetric cell with Na5SmSi4O12 delivers excellent cycling life over 800 h at 0.15 mA h cm-2 and a high critical current density of 1.4 mA cm-2. Such excellent electrochemical performance is attributed to an electrochemically induced in-situ crystalline-to-amorphous (CTA) transformation propagating from the interface to the bulk during repeated deposition and stripping of sodium, which leads to faster ionic transport and superior interfacial properties. Impressively, the Na|Na5SmSi4O12|Na3V2(PO4)3 sodium metal batteries achieve a remarkable cycling performance over 4000 cycles (6 months) with no capacity loss. These results not only identify Na5SmSi4O12 as a promising SE but also emphasize the potential of the CTA transition as a promising mechanism towards long-lasting SSBs.

7.
Small ; 19(46): e2302726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37480195

ABSTRACT

The rational design of novel high-performance cathode materials for sodium-ion batteries is a challenge for the development of the renewable energy sector. Here, a new sodium-deficient NASICON phosphate, namely Na3.40 □0.60 Co0.5 Fe0.5 V(PO4 )3 , demonstrating the excellent electrochemical performance is reported. The presence of Co allows a third Na+ to participate in the reaction thus exhibiting a high reversible capacity of ≈155 mAh g-1 in the voltage range of 2.0-4.0 V versus Na+ /Na with a reversible single-phase mechanism and a small volume shrinkage of ≈5.97% at 4.0 V. 23 Na solid-state nuclear magnetic resonance (NMR) combined with ex situ X-ray diffraction (XRD) refinements provide evidence for a preferential Na+ insertion within the Na2 site. Furthermore, the enhanced sodium kinetics ascribed to Co-substitution is also confirmed in combination with electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT), and theoretical calculation.

8.
Small ; 19(29): e2301915, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37189236

ABSTRACT

Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.

9.
J Am Chem Soc ; 145(12): 6845-6852, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926877

ABSTRACT

Pressure-induced topochemical polymerization of molecular crystals with various stackings is a promising way to synthesize materials with different co-existing sub-structures. Here, by compressing the azobenzene crystal containing two kinds of intermolecular stacking, we synthesized an ordered van der Waals carbon nanoribbon (CNR) heterostructure in one step. Azobenzene polymerizes via a [4 + 2] hetero-Diels-Alder (HDA) reaction of phenylazo-phenyl in layer A and a para-polymerization reaction of phenyl in layer B at 18 GPa, as evidenced by in situ Raman and IR spectroscopies, X-ray diffraction, as well as gas chromatography-mass spectrometry and the solid-state nuclear magnetic resonance of the recovered products. The theoretical calculation shows that the obtained CNR heterostructure has a type II (staggered) band gap alignment. Our work highlights a high-pressure strategy to synthesize bulk CNR heterostructures.

10.
Sci Adv ; 9(5): eade7078, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36735779

ABSTRACT

Piezoelectric ceramics have been extensively used in actuators, where the magnitude of electrostrain is key indicator for large-stroke actuation applications. Here, we propose an innovative strategy based on defect chemistry to form a defect-engineered morphotropic phase boundary and achieve a giant strain of 1.12% in lead-free Bi0.5Na0.5TiO3 (BNT)-based ceramics. The incorporation of the hypothetical perovskite BaAlO2.5 with nominal oxygen defect into BNT will form strongly polarized directional defect dipoles, leading to a strong pinning effect after aging. The large asymmetrical strain is mainly attributed to two factors: The defect dipoles along crystallographic [001] direction destroy the long-range ordering of the ferroelectric and activate a reversible phase transition while promoting polarization rotation when the dipoles are aligned along the applied electric field. Our results not only demonstrate the potential application of BNT-based materials in low-frequency, large-stroke actuators but also provide a general methodology to achieve large strain.

11.
J Am Chem Soc ; 145(3): 1548-1556, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36637214

ABSTRACT

Poly(ethylene oxide) has been widely investigated as a potential separator for solid-state lithium metal batteries. However, its applications were significantly restricted by low ionic conductivity and a narrow electrochemical stability window (<4.0 V vs Li/Li+) at room temperature. Herein, a novel molecular self-assembled ether-based polyrotaxane electrolyte was designed using different functional units and prepared by threading cyclic 18-crown ether-6 (18C6) to linear poly(ethylene glycol) (PEG) via intermolecular hydrogen bond and terminating with hexamethylene diisocyanate trimer (HDIt), which was strongly confirmed by local structure-sensitive solid/liquid-state nuclear magnetic resonance (NMR) techniques. The designed electrolyte has shown an obviously increased room-temperature ionic conductivity of 3.48 × 10-4 S cm-1 compared to 1.12 × 10-5 S cm-1 without assembling polyrotaxane functional units, contributing to the enhanced cycling stability of batteries with both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathode materials. This advanced molecular self-assembled strategy provides a new paradigm in designing solid polymer electrolytes with demanded performance for lithium metal batteries.

12.
J Am Chem Soc ; 144(48): 21837-21842, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36399710

ABSTRACT

2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp3-carbon nanothread (CNTh) upon compression. With the help of perfectly aligned π-π stacked molecules and strong intermolecular hydrogen bonds, crystalline poly-FDCA CNTh with uniform syn-configuration was obtained above 11 GPa, with the crystal structure determined by Rietveld refinement of the X-ray diffraction (XRD). The in situ XRD and theoretical simulation results show that the FDCA experienced continuous [4 + 2] Diels-Alder reactions along the stacking direction at the threshold C···C distance of ∼2.8 Å. Benefiting from the abundant carbonyl groups, the poly-FDCA shows a high specific capacity of 375 mAh g-1 as an anode material of a lithium battery with excellent Coulombic efficiency and rate performance. This is the first time a three-dimensional crystalline CNTh is obtained, and we demonstrated it is the hydrogen bonds that lead to the formation of the crystalline material with a unique configuration. It also provides a new method to move biomass compounds toward advanced functional carbon materials.


Subject(s)
Diamond
13.
Membranes (Basel) ; 12(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35629778

ABSTRACT

As a kind of volatile organic compound (VOC), methyl tert-butyl ether (MTBE) is hazardous to human health and destructive to the environment if not handled properly. MTBE should be removed before the release of wastewater. The present work supported the methyl-modified silica layer (MSL) on porous α-Al2O3 ceramic membranes with methyltrimethoxysilane (MTMS) as a precursor and pre-synthesized mesoporous silica microspheres as dopants by the sol-gel reaction and dip-coating method. MTMS is an environmentally friendly agent compared to fluorinated alkylsilane. The MSL-supported Al2O3 ceramic membranes were used for MTBE/water separation by pervaporation. The NMR spectra revealed that MTMS evolves gradually from an oligomer to a highly cross-linked methyl-modified silica species. Methyl-modified silica species and pre-synthesized mesoporous silica microspheres combine into hydrophobic mesoporous MSL. MSL makes the α-Al2O3 ceramic membranes transfer from amphiphilic to hydrophobic and oleophilic. The MSL-supported α-Al2O3 ceramic membranes (MSL-10) exhibit an MTBE/water separation factor of 27.1 and a total flux of 0.448 kg m-2 h-1, which are considerably higher than those of previously reported membranes that are modified by other alkylsilanes via the post-grafting method. The mesopores within the MSL provide a pathway for the transport of MTBE molecules across the membranes. The presence of methyl groups on the external and inner surface is responsible for the favorable separation performance and the outstanding long-term stability of the MSL-supported porous α-Al2O3 ceramic membranes.

14.
Inorg Chem ; 61(8): 3746-3753, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35167744

ABSTRACT

Ce3+-doped SrS phosphors with a charge-compensating Na+ addition were successfully synthesized via a solid-state reaction method, and the related X-ray diffraction patterns can be indexed to the rock-salt-like crystal structure of the Fm3̅m space group. SrS:(Ce3+)x (0.005 ≤ x ≤ 0.05) and SrS:(Ce3+)0.01,(Na+)y (0.005 ≤ y ≤ 0.030) phosphors were excited by 430 nm UV-Vis light, targeted to the 5d1 → 4f1 transition of Ce3+. The composition-optimized SrS:(Ce3+)0.01, (Na+)0.015 phosphors showed an intense broad emission band at λ = 430-700 nm. The doping of Na+ was probed by solid-state nuclear magnetic resonance. The 430 nm pumped white light-emitting diode structure fabricated with a combination of SrS:(Ce3+)0.01,(Na+)0.015 and Sr2Si5N8:Eu2+ phosphors shows a color-rendering index (Ra) of 89.7. The proposed strategy provides new avenues for the design and realization of novel high color quality solid-state LEDs.

15.
Adv Mater ; 34(10): e2108835, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35043500

ABSTRACT

The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPS) represent the main obstructions to the practical application of lithium-sulfur batteries (LSBs). Herein, a 1D π-d conjugated metal-organic framework (MOF), Ni-MOF-1D, is presented as an efficient sulfur host to overcome these limitations. Experimental results and density functional theory calculations demonstrate that Ni-MOF-1D is characterized by a remarkable binding strength for trapping soluble LiPS species. Ni-MOF-1D also acts as an effective catalyst for S reduction during the discharge process and Li2 S oxidation during the charging process. In addition, the delocalization of electrons in the π-d system of Ni-MOF-1D provides a superior electrical conductivity to improve electron transfer. Thus, cathodes based on Ni-MOF-1D enable LSBs with excellent performance, for example, impressive cycling stability with over 82% capacity retention over 1000 cycles at 3 C, superior rate performance of 575 mAh g-1 at 8 C, and a high areal capacity of 6.63 mAh cm-2 under raised sulfur loading of 6.7 mg cm-2 . The strategies and advantages here demonstrated can be extended to a broader range of π-d conjugated MOFs materials, which the authors believe have a high potential as sulfur hosts in LSBs.

16.
J Phys Chem Lett ; 12(50): 12055-12061, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34905378

ABSTRACT

Substituted polyacetylene is expected to improve the chemical stability, physical properties, and combine new functions to the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. The polymerization is evidenced to be a topochemical reaction with the help of hydrogen bonds. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.

17.
Inorg Chem ; 60(21): 16817-16825, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34677070

ABSTRACT

Oxide ion conductors can be used as electrolytes in solid oxide fuel cells, a promising energy-conversion technology. Local structures around the defects in oxide ion conductors are key for understanding the defect stabilization and migration mechanisms. As the defect contents are generally low, it is rather difficult to characterize the defect structure and therefore elucidate how oxide ions migrate. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for probing the local structures. However, the interpretation of NMR signals mainly based on the empirical knowledge could lead to unprecise local structures. There is still controversy regarding the defect structures in the apatite-type interstitial oxide ion conductors containing isolated tetrahedral units. Here, we combine the experimental solid-state 29Si NMR spectroscopy with theoretical density functional theory calculations to investigate the defect structures in La9.33+x(SiO4)6O2+1.5x apatites. The results indicate that the 29Si resonance signals on the high field side of the main peak corresponding to the Si atoms in the bulk structure are related to La vacancies and there is no steady-state SiO5 in the defect structures. This finding provides new atomic-level understanding to the stabilization and migration of interstitial oxide ions in silicate apatites, which could guide the design and discovery of new solid oxide fuel cell electrolyte materials.

18.
J Phys Chem Lett ; 12(30): 7140-7145, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34297574

ABSTRACT

Pressure-induced polymerization of aromatics is an effective method to construct extended carbon materials, including the diamond-like nanothread and graphitic structures, but the reaction pressure of phenyl is typically around 20 GPa and too high to be applied for large-scale preparation. Here by introducing ethynyl to phenyl, we obtained a sp2-sp3 carbon nanoribbon structure by compressing 1,3,5-triethynylbenzene (TEB), and the reaction pressure of phenyl was successfully decreased to 4 GPa, which is the lowest reaction pressure of aromatics at room temperature. Using experimental and theoretical methods, we figured out that the ethynylphenyl of TEB undergoes [4 + 2] dehydro-Diels-Alder (DDA) reaction with phenyl upon compression at an intermolecular C···C distance above 3.3 Å, which is much longer than those of benzene and acetylene. Our research suggested that the DDA reaction between ethynylphenyl and phenyl is a promising route to decrease the reaction pressure of aromatics, which allows the scalable high-pressure synthesis of nanoribbon materials.

19.
Nat Commun ; 12(1): 1410, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658494

ABSTRACT

Monitoring the formation of dendrites or filaments of lithium is of paramount importance for Li-based battery technologies, hence the intense activities in designing in situ techniques to visualize their growth. Herein we report the benefit of correlating in situ electron paramagnetic resonance (EPR) spectroscopy and EPR imaging to analyze the morphology and location of metallic lithium in a symmetric Li/LiPF6/Li electrochemical cell during polarization. We exploit the variations in shape, resonance field and amplitude of the EPR spectra to follow, operando, the nucleation of sub-micrometric Li particles (narrow and symmetrical signal) that conjointly occurs with the fragmentation of bulk Li on the opposite electrode (asymmetrical signal). Moreover, in situ EPR correlated spectroscopy and imaging (spectral-spatial EPR imaging) allows the identification (spectral) and localization (spatial) of the sub-micrometric Li particles created by plating (deposition) or stripping (altered bulk Li surface). We finally demonstrate the possibility to visualize, via in situ EPR imaging, dendrites formed through the separator in the whole cell. Such a technique could be of great help in mastering the Li-electrolyte interface issues that plague the development of solid-state batteries.

20.
J Am Chem Soc ; 142(41): 17662-17669, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32900188

ABSTRACT

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2 Å between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

SELECTION OF CITATIONS
SEARCH DETAIL
...