Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672450

ABSTRACT

Motilin is a gastrointestinal hormone that is mainly produced in the duodenum of mammals, and it is responsible for regulating appetite. However, the role and expression of motilin are poorly understood during starvation and the weaning stage, which is of great importance in the seeding cultivation of fish. In this study, the sequences of Yangtze sturgeon (Acipenser dabryanus Motilin (AdMotilin)) motilin receptor (AdMotilinR) were cloned and characterized. The results of tissue expression showed that by contrast with mammals, AdMotilin mRNA was richly expressed in the brain, whereas AdMotilinR was highly expressed in the stomach, duodenum, and brain. Weaning from a natural diet of T. Limnodrilus to commercial feed significantly promoted the expression of AdMotilin in the brain during the period from day 1 to day 10, and after re-feeding with T. Limnodrilus the change in expression of AdMotilin was partially reversed. Similarly, it was revealed that fasting increased the expression of AdMotilin in the brain (3 h, 6 h) and duodenum (3 h), and the expression of AdMotilinR in the brain (1 h) in a time-dependent manner. Furthermore, it was observed that peripheral injection of motilin-NH2 increased food intake and the filling index of the digestive tract in the Yangtze sturgeon, which was accompanied by the changes of AdMotilinR and appetite factors expression in the brain (POMC, CART, AGRP, NPY and CCK) and stomach (CCK). These results indicate that motilin acts as an indicator of nutritional status, and also serves as a novel orexigenic factor that stimulates food intake in Acipenser dabryanus. This study lays a strong foundation for the application of motilin as a biomarker in the estimation of hunger in juvenile Acipenser dabryanu during the weaning phase, and enhances the understanding of the role of motilin as a novel regulator of feeding in fish.


Subject(s)
Feeding Behavior , Fishes , Motilin , Animals , Brain/metabolism , Fish Proteins/metabolism , Fishes/metabolism , Fishes/genetics , Fishes/physiology , Motilin/genetics , Motilin/metabolism , Motilin/pharmacology , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
2.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587080

ABSTRACT

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Subject(s)
Antibodies, Neutralizing , Nasal Sprays , Animals , Cricetinae , Humans , China , Trachea , Healthy Volunteers
3.
Genes Dis ; 11(4): 101114, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38560500

ABSTRACT

Liver cancer stem cells were found to rely on glycolysis as the preferred metabolic program. Phosphoenolpyruvate carboxylase 1 (PCK1), a gluconeogenic metabolic enzyme, is down-regulated in hepatocellular carcinoma and is closely related to poor prognosis. The oncogenesis and progression of tumors are closely related to cancer stem cells. It is not completely clear whether the PCK1 deficiency increases the stemness of hepatoma cells and promotes the oncogenesis of hepatocellular carcinoma. Herein, the results showed that PCK1 inhibited the self-renewal property of hepatoma cells, reduced the mRNA level of cancer stem cell markers, and inhibited tumorigenesis. Moreover, PCK1 increased the sensitivity of hepatocellular carcinoma cells to sorafenib. Furthermore, we found that PCK1 activated the Hippo pathway by enhancing the phosphorylation of YAP and inhibiting its nuclear translocation. Verteporfin reduced the stemness of hepatoma cells and promoted the pro-apoptotic effect of sorafenib. Thus, combined treatment with verteporfin and sorafenib may be a potential anti-tumor strategy in hepatocellular carcinoma.

4.
Environ Pollut ; 349: 123966, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38621451

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.


Subject(s)
Carps , Dietary Exposure , Halogenated Diphenyl Ethers , Janus Kinases , Signal Transduction , Water Pollutants, Chemical , Animals , Halogenated Diphenyl Ethers/toxicity , Carps/metabolism , Carps/physiology , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Feeding Behavior/drug effects
5.
J Affect Disord ; 354: 275-285, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38490590

ABSTRACT

FOR FULL-LENGTH ARTICLES: This study systematically identified the effects of physical activity (PA) on depression, anxiety and weight-related outcomes among children and adolescents with overweight/obesity. EMBASE, The Cochrane Library, Web of Science, and PubMed were searched from January 1, 2000 to August 1, 2022 for peer-reviewed papers. Meta-analyses were conducted to ascertain the effect of physical activity on symptoms of anxiety, depression and weight-related outcomes in overweight/obese children and adolescents. Twenty-five studies representing 2188 participants, with median age 12.08 years old (8.3 to 18.44 years) were included. Depressive and anxiety symptoms, BMI, BMI z-scores, weight, waist circumference and height were evaluated. After incorporating the effects of PA interventions on children and adolescents with overweight/obesity, PA could improve depressive and anxiety symptoms, but not obesity indexes except waist circumference. While, PA combined with other interventions have a significant effect both on anxiety symptoms and BMI compared to pure PA intervention. In terms of intervention duration, we observed that durations falling within the range of 8 to 24 weeks exhibited the most positive effects on reducing depressive symptoms. FOR SHORT COMMUNICATIONS: We included 25 articles on the effects of physical activity on psychological states such as depression and anxiety, weight, BMI and other weight-related indicators in children and adolescents with overweight/obesity. We attempted to determine the most appropriate type of physical activity intervention for children and adolescents with overweight/obesity, as well as the most appropriate population characteristics and duration by combining the outcome data from each article. This has a great enlightening effect for health workers to carry out corresponding strategies in the future.


Subject(s)
Overweight , Pediatric Obesity , Adolescent , Child , Humans , Overweight/therapy , Overweight/psychology , Pediatric Obesity/therapy , Pediatric Obesity/psychology , Depression/therapy , Exercise , Anxiety/epidemiology , Anxiety/therapy
6.
Ecotoxicol Environ Saf ; 274: 116192, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38461574

ABSTRACT

To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.


Subject(s)
Carps , Chemical and Drug Induced Liver Injury , Halogenated Diphenyl Ethers , Animals , Antioxidants/metabolism , Carps/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Ether/metabolism , Ether/pharmacology , Hepatopancreas/metabolism , Dietary Exposure , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Apoptosis , Chemical and Drug Induced Liver Injury/metabolism
7.
Front Endocrinol (Lausanne) ; 15: 1326098, 2024.
Article in English | MEDLINE | ID: mdl-38405138

ABSTRACT

Background: The necessity of monitoring luteal endocrine functions in in vitro fertilization- embryo transfer (IVF-ET) remains uncertain. Specifically, the significance of luteal phase estradiol (E2) levels is a matter of debate in current literature. Objective: To assess the impact of luteal phase (day 11 after HCG trigger) estradiol levels on IVF-ET outcomes. Design: Twelve thousand five hundred and thirty-five (n = 12,535) IVF-ET cycles performed in our center between 2015 and 2021 were divided into 5 groups based on the middle and late luteal phase serum E2 (MllPSE2) level percentiles as follows: Group A < 50 pg/mL (N=500), group B 50 pg/mL≤E2<150 pg/mL (N=2545), group C 150 pg/mL≤E2<250 pg/mL (N=1327), group D 250 pg/mL≤E2<500 pg/mL (N=925), group E E2≥500 pg/mL (n=668). The clinical pregnancy rates, abortion rates, and live birth rates of each group were compared. Binary logistic regression analysis was carried out to assess the potential impact of MllPSE2 on the live birth rate (LBR). Results: No significant differences were found in various parameters when comparing the five groups. The level of MllPSE2 showed no significant difference between the pregnant group and the non-pregnant group. The binary logistic regression analysis model demonstrated that MllPSE2 was not significantly related to LBR. Conclusion: The influence of E2 during the peri-implantation period (day 11) on clinical outcome in IVF-ET is not affected, even if E2<50 pg/mL. It is speculated that ovarian-derived E2 in MllPSE2 is not deemed necessary for endometrial receptivity. Although caution is warranted due to the retrospective nature of the analysis and the potential for unmeasured confounding, it is argued that the need for luteal E2 monitoring in IVF-ET may be of questionable value.


Subject(s)
Fertilization in Vitro , Pregnancy Outcome , Female , Pregnancy , Humans , Retrospective Studies , Embryo Transfer , Estradiol , Lutein
8.
Oncogene ; 43(15): 1149-1159, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396292

ABSTRACT

O-linked-ß-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) and ubiquitination are critical posttranslational modifications that regulate tumor development and progression. The continuous progression of the cell cycle is the fundamental cause of tumor proliferation. S-phase kinase-associated protein 2 (SKP2), an important E3 ubiquitin ligase, assumes a pivotal function in the regulation of the cell cycle. However, it is still unclear whether SKP2 is an effector of O-GlcNAcylation that affects tumor progression. In this study, we found that SKP2 interacted with O-GlcNAc transferase (OGT) and was highly O-GlcNAcylated in hepatocellular carcinoma (HCC). Mechanistically, the O-GlcNAcylation at Ser34 stabilized SKP2 by reducing its ubiquitination and degradation mediated by APC-CDH1. Moreover, the O-GlcNAcylation of SKP2 enhanced its binding ability with SKP1, thereby enhancing its ubiquitin ligase function. Consequently, SKP2 facilitated the transition from the G1-S phase of the cell cycle by promoting the ubiquitin degradation of cell cycle-dependent kinase inhibitors p27 and p21. Additionally, targeting the O-GlcNAcylation of SKP2 significantly suppressed the proliferation of HCC. Altogether, our findings reveal that O-GlcNAcylation, a novel posttranslational modification of SKP2, plays a crucial role in promoting HCC proliferation, and targeting the O-GlcNAcylation of SKP2 may become a new therapeutic strategy to impede the progression of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , S-Phase Kinase-Associated Proteins , Humans , Carcinoma, Hepatocellular/pathology , Cell Division , Liver Neoplasms/pathology , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
9.
Fish Physiol Biochem ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381278

ABSTRACT

Gastrin is an important intragastrointestinal hormone, but reports on its regulation of feeding behavior in fish are still scarce. This study aimed to determine the feeding regulatory function of gastrin in sturgeon. In this study, a gastrin/cholecystokinin-like peptide was identified in the genomes of sturgeon and proved to be gastrin by evolutionary tree analysis. Tissue distribution of gastrin and its receptor, cholecystokinin receptor B (CCKRB), showed that both had high mRNA abundance in the hypothalamus and gastrointestinal tract. In the duodenum, gastrin and CCKRB mRNAs were reduced at 1 h of fasting, and both were also observed in the stomach and hypothalamus in response to changes in feeding status. Sulfated gastrin 17 is the major form of gastrin in vivo. Therefore, we investigated the effect of sulfated gastrin 17 on feeding by intraperitoneal injection into Siberian sturgeon using sulfated gastrin 17. The results showed that gastrin 17 significantly reduced the cumulative feeding of Siberian sturgeon in the short term (1, 3 and 6 h) and long term (1, 2, 3, 4, 5 and 7 days). Finally, we explored the potential mechanism of feeding inhibition after intraperitoneal injection of gastrin 17 for 7 consecutive days. The results showed that gastrin 17 treatment significantly increased the mRNA levels of anorexigenic peptides (cart, cck and pyy), while it had no significant effect on the mRNA abundance of orexigenic peptides (npy and agrp). In addition, gastrin 17 treatment significantly affected the expression of appetite signaling pathways in the hypothalamus, such that the mRNA expression of ampkα1 was significantly reduced, whereas the mRNA abundance of stat3, mtor and s6k was significantly increased. In conclusion, the present study confirmed the anorectic effect of gastrin on Siberian sturgeon.

10.
Article in English | MEDLINE | ID: mdl-38191049

ABSTRACT

Emerging findings point to a role for C1q/TNF-related protein 4 (CTRP4) in feeding in mammals. However, it remains unknown whether CTRP4 regulates feeding in fish. This study aimed to determine the feeding regulation function of CTRP4 in Siberian sturgeon (Acipenser baerii). In this study, the Siberian sturgeon ctrp4 (Abctrp4) gene was cloned, and Abctrp4 mRNA was shown to be highly expressed in the hypothalamus. In the hypothalamus, Abctrp4 mRNA decreased during fasting and reversed after refeeding. Subsequently, we obtained the AbCTRP4 recombinant protein by prokaryotic expression and optimized the expression and purification conditions. Siberian sturgeon (81.28 ± 14.75 g) were injected intraperitoneally using 30, 100, and 300 ng/g Body weight (BW) AbCTRP4 to investigate its effect on feeding. The results showed that 30, 100, and 300 ng/g BW of the AbCTRP4 significantly reduced the cumulative food intake of Siberian sturgeon at 1, 3, and 6 h. Finally, to investigate the potential mechanism of CTRP4 feeding inhibition, 300 ng/g BW AbCTRP4 was injected intraperitoneally. The findings demonstrated that AbCTRP4 treatment for 1 h significantly promoted the mRNA levels of anorexigenic peptides (pomc, cart, and leptin) while suppressing the mRNA abundances of orexigenic peptides (npy and agrp).In addition, the jak2/stat3 pathway in the hypothalamus was significantly activated after 1 h of AbCTRP4 treatment. In conclusion., this study confirms the anorexigenic effect of CTRP4 in Siberian sturgeon.


Subject(s)
Appetite , Complement C1q , Animals , Appetite/genetics , Complement C1q/metabolism , Complement C1q/pharmacology , Eating/physiology , Fishes/physiology , Peptides/genetics , Peptides/pharmacology , Peptides/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/metabolism
11.
Heliyon ; 10(1): e23923, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38223741

ABSTRACT

Objective: Pre-treatment enhanced CT image data were used to train and build models to predict the efficacy of non-small cell lung cancer after conventional radiotherapy and chemotherapy using two classification algorithms, Logistic Regression (LR) and Gaussian Naive Baye (GNB). Methods: In this study, we used pre-treatment enhanced CT image data for region of interest (ROI) sketching and feature extraction. We utilized the least absolute shrinkage and selection operator (LASSO) mutual confidence method for feature screening. We pre-screened logistic regression (LR) and Gaussian naive Bayes (GNB) classification algorithms and trained and modeled the screened features. We plotted 5-fold and 10-fold cross-validated receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC). We performed DeLong's test for validation and plotted calibration curves and decision curves to assess model performance. Results: A total of 102 patients were included in this study, and after a comparative analysis of the two models, LR had only slightly lower specificity than GNB, and higher sensitivity, accuracy, AUC value, precision, and F1 value than GNB (training set accuracy: 0.787, AUC value: 0.851; test set accuracy: 0.772, AUC value: 0.849), and the LR model has better performance in both the decision curve and the calibration curve. Conclusion: CT can be used for efficacy prediction after radiotherapy and chemotherapy in NSCLC patients. LR is more suitable for predicting whether NSCLC prognosis is in remission without considering the computing speed.

12.
J Exp Clin Cancer Res ; 43(1): 35, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287371

ABSTRACT

BACKGROUND: Hepatocellular Carcinoma (HCC) is a matter of great global public health importance; however, its current therapeutic effectiveness is deemed inadequate, and the range of therapeutic targets is limited. The aim of this study was to identify early growth response 1 (EGR1) as a transcription factor target in HCC and to explore its role and assess the potential of gene therapy utilizing EGR1 for the management of HCC. METHODS: In this study, both in vitro and in vivo assays were employed to examine the impact of EGR1 on the growth of HCC. The mouse HCC model and human organoid assay were utilized to assess the potential of EGR1 as a gene therapy for HCC. Additionally, the molecular mechanism underlying the regulation of gene expression and the suppression of HCC growth by EGR1 was investigated. RESULTS: The results of our investigation revealed a notable decrease in the expression of EGR1 in HCC. The decrease in EGR1 expression promoted the multiplication of HCC cells and the growth of xenografted tumors. On the other hand, the excessive expression of EGR1 hindered the proliferation of HCC cells and repressed the development of xenografted tumors. Furthermore, the efficacy of EGR1 gene therapy was validated using in vivo mouse HCC models and in vitro human hepatoma organoid models, thereby providing additional substantiation for the anti-cancer role of EGR1 in HCC. The mechanistic analysis demonstrated that EGR1 interacted with the promoter region of phosphofructokinase-1, liver type (PFKL), leading to the repression of PFKL gene expression and consequent inhibition of PFKL-mediated aerobic glycolysis. Moreover, the sensitivity of HCC cells and xenografted tumors to sorafenib was found to be increased by EGR1. CONCLUSION: Our findings suggest that EGR1 possesses therapeutic potential as a tumor suppressor gene in HCC, and that EGR1 gene therapy may offer benefits for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Gene Expression Regulation, Neoplastic , Glycolysis , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Sorafenib/pharmacology
13.
Nat Cell Biol ; 26(2): 263-277, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238450

ABSTRACT

Human in vitro fertilized embryos exhibit low developmental capabilities, and the mechanisms that underlie embryonic arrest remain unclear. Here using a single-cell multi-omics sequencing approach, we simultaneously analysed alterations in the transcriptome, chromatin accessibility and the DNA methylome in human embryonic arrest due to unexplained reasons. Arrested embryos displayed transcriptome disorders, including a distorted microtubule cytoskeleton, increased genomic instability and impaired glycolysis, which were coordinated with multiple epigenetic reprogramming defects. We identified Aurora A kinase (AURKA) repression as a cause of embryonic arrest. Mechanistically, arrested embryos induced through AURKA inhibition resembled the reprogramming abnormalities of natural embryonic arrest in terms of the transcriptome, the DNA methylome, chromatin accessibility and H3K4me3 modifications. Mitosis-independent sequential activation of the zygotic genome in arrested embryos showed that YY1 contributed to human major zygotic genome activation. Collectively, our study decodes the reprogramming abnormalities and mechanisms of human embryonic arrest and the key regulators of zygotic genome activation.


Subject(s)
Aurora Kinase A , Multiomics , Humans , Aurora Kinase A/genetics , Blastocyst , Chromatin/genetics , Cytoskeleton , Embryonic Development/genetics
14.
Adv Sci (Weinh) ; 11(5): e2305374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059827

ABSTRACT

Solute carrier family 27 member 5, a key enzyme in fatty acid transport and bile acid metabolism in the liver, is frequently expressed in low quantities in patients with hepatocellular carcinoma, resulting in poor prognosis. However, it is unclear whether SLC27A5 plays non-canonical functions and regulates HCC progression. Here, an unexpected non-canonical role of SLC27A5 is reported: regulating the alternative splicing of mRNA to inhibit the metastasis of HCC independently of its metabolic enzyme activity. Mechanistically, SLC27A5 interacts with IGF2BP3 to prevent its translocation into the nucleus, thereby inhibiting its binding to target mRNA and modulating PIP4K2A pre-mRNA splicing. Loss of SLC27A5 results in elevated levels of the PIP4K2A-S isoform, thus positively regulating phosphoinositide 3-kinase signaling via enhanced p85 stability in HCC. SLC27A5 restoration by AAV-Slc27a5 or IGF2BP3 RNA decoy oligonucleotides exerts an inhibitory effect on HCC metastasis with reduced expression of the PIP4K2A-S isoform. Therefore, PIP4K2A-S may be a novel target for treating HCC with SLC27A5 deficiency.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phosphotransferases (Alcohol Group Acceptor) , RNA Splicing , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Fatty Acid Transport Proteins , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Isoforms/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Adv Sci (Weinh) ; 11(2): e2304408, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957540

ABSTRACT

Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Animals , Humans , Mice , Bile Acids and Salts , Cholic Acid/adverse effects , Cholic Acid/metabolism , Disease Models, Animal , Fatty Acid Transport Proteins/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/pathology
16.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119642, 2024 02.
Article in English | MEDLINE | ID: mdl-37996058

ABSTRACT

Liver cancer is ranked as the sixth most prevalent from of malignancy globally and stands as the third primary contributor to cancer-related mortality. Metastasis is the main reason for liver cancer treatment failure and patient deaths. Speckle-type POZ protein (SPOP) serves as a crucial substrate junction protein within the cullin-RING E3 ligase complex, acting as a significant tumor suppressor in liver cancer. Nevertheless, the precise molecular mechanism underlying the role of SPOP in liver cancer metastasis remain elusive. In the current study, we identified cAMP response element binding 5 (CREB5) as a novel SPOP substrate in liver cancer. SPOP facilitates non-degradative K63-polyubiquitination of CREB5 on K432 site, consequently hindering its capacity to activate receptor tyrosine kinase MET. Moreover, liver cancer-associated SPOP mutant S119N disrupts the SPOP-CREB5 interactions and impairs the ubiquitination of CREB5.This disruption ultimately leads to the activation of the MET signaling pathway and enhances metastatic properties of hepatoma cells both in vitro and in vivo. In conclusion, our findings highlight the functional significance of the SPOP-CREB5-MET axis in liver cancer metastasis.


Subject(s)
Liver Neoplasms , Humans , Ubiquitination , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Nucleus , Cell Line , Signal Transduction , Nuclear Proteins/genetics , Repressor Proteins/genetics , Cyclic AMP Response Element-Binding Protein A
17.
J Med Virol ; 95(12): e29254, 2023 12.
Article in English | MEDLINE | ID: mdl-38018242

ABSTRACT

Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Antiviral Agents/pharmacology , DNA, Circular , DNA, Viral/genetics , Hepatitis B/genetics , Hepatitis B virus/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Ubiquitination , Virus Replication
18.
JCI Insight ; 8(23)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906252

ABSTRACT

Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti-programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Vascular Endothelial Growth Factor A/metabolism , Ketoglutaric Acids , Angiogenesis , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment
19.
Signal Transduct Target Ther ; 8(1): 403, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37867182

ABSTRACT

Previously, we identified an antibody combination A8G6 that showed promising efficacy in COVID-19 animal models and favorable safety profile in preclinical models as well as in a first-in-human trial. To evaluate the real-word efficacy of A8G6 neutralizing antibody nasal spray in post-exposure prophylaxis of COVID-19, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was conducted in Chongqing, China (the register number: ChiCTR2200066416). High-risk healthy participants (18-65 years) within 72 h after close contact to COVID-19 patients were recruited and received a three-dose (1.4 mg/dose) A8G6 treatment daily or no treatment (blank control) for 7 consecutive days. SARS-CoV-2 infection occurred in 151/340 (44.4%) subjects in the blank control group and 12/173 (6.9%) subjects in the A8G6 treatment group. The prevention efficacy of the A8G6 treatment within 72 h exposure was calculated to be 84.4% (95% CI: 74.4-90.4%). Moreover, compared to the blank-control group, the time from the SARS-CoV-2 negative to the positive COVID-19 conversion was significantly longer in the AG86 treatment group (mean time: 3.4 days vs 2.6 days, p = 0.019). In the secondary end-point analysis, the A8G6 nasal treatment had no effects on the viral load at baseline SARS-CoV-2 RT-PCR positivity and the time of the negative COVID-19 conversion. Finally, except for 5 participants (3.1%) with general adverse effects, we did not observe any severe adverse effects related to the A8G6 treatment. In this study, the intranasal spray AG86 antibody cocktail showed potent efficacy for prevention of SARS-CoV-2 infection in close contacts of COVID-19 patients.


Subject(s)
COVID-19 , Humans , Combined Antibody Therapeutics , SARS-CoV-2 , Post-Exposure Prophylaxis , Antibodies, Neutralizing
20.
Cell Metab ; 35(11): 1961-1975.e6, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37797623

ABSTRACT

Emerging studies have addressed the tumor-promoting role of fructose in different cancers. The effects and pathological mechanisms of high dietary fructose on hepatocellular carcinoma (HCC) remain unclear. Here, we examined the effects of fructose supplementation on HCC progression in wild-type C57BL/6 mice using a spontaneous and chemically induced HCC mouse model. We show that elevated uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and O-GlcNAcylation levels induced by high dietary fructose contribute to HCC progression. Non-targeted metabolomics and stable isotope tracing revealed that under fructose treatment, microbiota-derived acetate upregulates glutamine and UDP-GlcNAc levels and enhances protein O-GlcNAcylation in HCC. Global profiling of O-GlcNAcylation revealed that hyper-O-GlcNAcylation of eukaryotic elongation factor 1A1 promotes cell proliferation and tumor growth. Targeting glutamate-ammonia ligase or O-linked N-acetylglucosamine transferase (OGT) remarkably impeded HCC progression in mice with high fructose intake. We propose that high dietary fructose promotes HCC progression through microbial acetate-induced hyper-O-GlcNAcylation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Mice, Inbred C57BL , Cell Proliferation/physiology , Uridine Diphosphate/metabolism , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...