Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687191

ABSTRACT

The hierarchical assembly of nanoapatite within a type I collagen matrix was achieved through biomimetic mineralization in vitro, cooperatively regulated by non-collagenous proteins and small biomolecules. Here, we demonstrated that IP6 could significantly promote intrafibrillar mineralization in two- and three-dimensional collagen models through binding to collagen fibrils via hydrogen bonds (the interaction energy ∼10.21 kJ mol-1), as confirmed by the FTIR spectra and isothermal experimental results. In addition, we find that IP6 associated with dental collagen fibrils can also enhance the remineralization of calcium-depleted dentin and restore its mechanical properties similar to the natural dentin within 4 days. The promoting effect is mainly due to the chemical modification of IP6, which alters the interfacial physicochemical properties of collagen fibrils, strengthening the interaction of calcium phosphate minerals and mineral ions with collagen fibrils. This strategy of interfacial regulation to accelerate the mineralization of collagen fibrils is essential for dental repair and the development of a clinical product for the remineralization of hard tissue.

2.
Adv Healthc Mater ; : e2400102, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657167

ABSTRACT

The phosphorylated noncollagenous proteins (NCPs) play a vital role in manipulating biomineralization, while the mechanism of phosphorylation of NCPs in intrafibrillar mineralization of collagen fibril has not been completely deciphered. Poly(vinylphosphonic acid) (PVPA) and sodium trimetaphosphate (STMP) as templating analogs of NCPs induce hierarchical mineralization in cooperation with indispensable sequestration analogs such as polyacrylic acid (PAA) via polymer-induced liquid-like precursor (PILP) process. Herein, STMP-Ca and PVPA-Ca complexes are proposed to achieve rapid intrafibrillar mineralization through polyelectrolyte-Ca complexes pre-precursor (PCCP) process. This strategy is further verified effectively for remineralization of demineralized dentin matrix both in vitro and in vivo. Although STMP micromolecule fails to stabilize amorphous calcium phosphate (ACP) precursor, STMP-Ca complexes facilely permeate into intrafibrillar interstices and trigger phase transition of ACP to hydroxyapatite within collagen. In contrast, PVPA-stabilized ACP precursors lack liquid-like characteristic and crystallize outside collagen due to rigid conformation of PVPA macromolecule, while PVPA-Ca complexes infiltrate into partial intrafibrillar intervals under electrostatic attraction and osmotic pressure as evidenced by intuitionistic 3D stochastic optical reconstruction microscopy (3D-STORM). The study not only extends the variety and size range of polyelectrolyte for PCCP process but also sheds light on the role of phosphorylation for NCPs in biomineralization.

3.
Chem Commun (Camb) ; 60(29): 3950-3953, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38498350

ABSTRACT

In situ AFM observations show that when PILP droplets contact a surface, their initial properties are either a liquid with a high interfacial tension (350 mJ m-2) or a soft gel-like material with a low modulus (less than 0.2 MPa). These findings suggest that PILP may initially be liquid-like to infiltrate collagen fibrils, enabling the production of interpenetrating composites, and/or become viscoelastic, to provide a means for moulding minerals.

4.
Nat Nanotechnol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499860

ABSTRACT

Bone is the most common site of metastasis, and although low proliferation and immunoediting at the early stage make existing treatment modalities less effective, the microenvironment-inducing behaviour could be a target for early intervention. Here we report on a spatiotemporal coupling interaction between tumour cells and osteoclasts, and named the tumour-associated osteoclast 'tumasteoclast'-a subtype of osteoclasts in bone metastases induced by tumour-migrasome-mediated cytoplasmic transfer. We subsequently propose an in situ decoupling-killing strategy in which tetracycline-modified nanoliposomes encapsulating sodium bicarbonate and sodium hydrogen phosphate are designed to specifically release high concentrations of hydrogen phosphate ions triggered by tumasteoclasts, which depletes calcium ions and forms calcium-phosphorus crystals. This can inhibit the formation of migrasomes for decoupling and disrupt cell membrane for killing, thereby achieving early prevention of bone metastasis. This study provides a research model for exploring tumour cell behaviour in detail and a proof-of-concept for behaviour-targeting strategy.

5.
J Phys Chem Lett ; 15(9): 2624-2631, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38420912

ABSTRACT

As a result of the non-directionality of ionic bonds, oppositely charged ions always assemble into closely packed clusters or crystals rather than linear structured ionic species. Here, we generated a series of linear calcium carbonate chains, (Ca2+CO32-)n, with an orientated directionality of the ionic interactions. The formation of these ionic chains with long-range ordered ionic interactions was originally induced by the dipole orientation of the ions and subsequently preserved by capping agents. According to the appropriately established folding-capping model, rational control of the capping effect can regulate the length of the (Ca2+CO32-)n chain within 100 nm, corresponding to n ≤ 250. Our discovery overturns the current understanding of ionic bonding in chemistry and opens a way to control the assembly of inorganic ions at molecular scale, pushing forward a fusion of molecular compounds and ionic compounds that share similar topological control.

6.
Mater Today Bio ; 25: 100996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38420143

ABSTRACT

Reactive Oxygen Species (ROS) refers to a highly reactive class of oxidizing species that have the potential to induce cellular apoptosis and necrosis. Cuproptosis, a type of cell death, is primarily associated with the effects of copper ions. However, the specific relationship between ROS, cuproptosis, and osteosarcoma (OS) remains relatively unexplored. Additionally, there is limited research on the use of cuproptosis in conjunction with oxidative stress for treating OS and inhibiting tumor-induced bone destruction. To address these gaps, a novel treatment approach has been developed for OS and neoplastic bone destruction. This approach involves the utilization of glutathione (GSH) and pH-responsive organic-inorganic mesoporous silica nanoparticles@Cu2S@oxidized Dextran (short for MCD). The MCD material demonstrates excellent cytocompatibility, osteogenesis, tumor suppression, and the ability to inhibit osteoclast formation. The specific mechanism of action involves the mitochondria of the MCD material inhibiting key proteins in the tricarboxylic acid (TCA) cycle. Simultaneously, the generation of ROS promotes this inhibition and leads to alterations in cellular energy metabolism. Moreover, the MCD biomaterial exhibits promising mild-temperature photothermal therapy in the second near-infrared (NIR-II) range, effectively mitigating tumor growth and OS-induced bone destruction in vivo.

7.
Nanomaterials (Basel) ; 14(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38392750

ABSTRACT

Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.

8.
Adv Healthc Mater ; 13(10): e2303488, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265149

ABSTRACT

Amphiphilic biomolecules are abundant in mineralization front of biological hard tissues, which play a vital role in osteogenesis and dental hard tissue formation. Amphiphilic biomolecules function as biosurfactants, however, their biosurfactant role in biomineralization process has never been investigated. This study, for the first time, demonstrates that aggregated amorphous calcium phosphate (ACP) nanoparticles can be reversed into dispersed ultrasmall prenucleation clusters (PNCs) via breakdown and dispersion of the ACP nanoparticles by a surfactant. The reduced surface energy of ACP@TPGS and the electrostatic interaction between calcium ions and the pair electrons on oxygen atoms of C-O-C of D-α-tocopheryl polyethylene glycol succinate (TPGS) provide driving force for breakdown and dispersion of ACP nanoparticles into ultrasmall PNCs which promote in vitro and in vivo biomimetic mineralization. The ACP@TPGS possesses excellent biocompatibility without any irritations to oral mucosa and dental pulp. This study not only introduces surfactant into biomimetic mineralization field, but also excites attention to the neglected biosurfactant role during biomineralization process.


Subject(s)
Nanoparticles , Surface-Active Agents , Biomineralization , Biomimetics , Calcium Phosphates/chemistry , Polyethylene Glycols , Nanoparticles/chemistry
9.
Adv Healthc Mater ; 13(2): e2302418, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37742096

ABSTRACT

Despite significant efforts utilizing advanced technologies, the contentious debate surrounding the intricate mechanism underlying collagen fibril mineralization, particularly with regard to amorphous precursor infiltration and phase transformation, persists. This work proposes an amorphous calcium phosphate (ACP)-mediated pathway for collagen fibril mineralization and utilizing stochastic optical reconstruction microscopy technology, and has experimentally confirmed for the first time that the ACP nanoparticles can infiltrate inside collagen fibrils. Subsequently, the ACP-mediated phase transformation occurs within collagen fibrils to form HAP crystallites, and significantly enhances the mechanical properties of the mineralized collagen fibrils compared to those achieved by the calcium phosphate ion (CPI)-mediated mineralization and resembles the natural counterpart. Furthermore, demineralized dentin can be effectively remineralized through ACP-mediated mineralization, leading to complete restoration of its mechanical properties. This work provides a new paradigm of collagen mineralization via particle-mediated phase transformation, deepens the understanding of the mechanism behind the mineralization of collagen fibrils, and offers a new strategy for hard tissue repair.


Subject(s)
Collagen , Extracellular Matrix , Collagen/metabolism , Extracellular Matrix/metabolism , Calcium Phosphates
10.
Adv Mater ; 36(3): e2308017, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38009645

ABSTRACT

Alloys often combine different metals to generate superior mechanical properties. However, it is challenging to prepare high mechanical strength minerals with similar strategies. Using calcium carbonate (CaC) and calcium phosphate (CaP) as examples, this work synthesizes a group of compounds with the chemical formulas Ca(CO3 )x (PO4 )2(1- x )/3 (0 < x < 1, CaCPs) by cross-linking ionic oligomers. Unlike mixtures, these CaCPs exhibit a single temperature for the phase transition from amorphous to crystallized CaC (calcite) and CaP (hydroxyapatite). By heat-induced synchronous crystallization, dual-phase CaC/CaP with continuous crystallized boundaries are resembled to alloy-like minerals (ALMs). The mechanical properties of the ALMs are adjusted by tailoring their chemical compositions to reach a hardness of 5.6 GPa, which exceed those of control calcite and hydroxyapatite samples by 430% and 260%, respectively. This strategy expands the chemical scope of inorganic materials and holds promise for preparing high-performance minerals.

11.
J Mater Chem B ; 11(45): 10923-10928, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37934507

ABSTRACT

The strategy of using tumor cells to construct whole-cell cancer vaccines has received widespread attention. However, the limited immunogenicity of inactivated tumor cells and the challenge of overcoming immune suppression in solid tumors have hindered the application of whole-cell-based cancer immune therapy. Inspired by the regulatory effects of MnO2 and spatiotemporal control capability of material layers in cell surface engineering, we developed a manganese (Mn)-mineralized tumor cell, B16F10@MnO2, by inactivating B16F10 melanoma cells with KMnO4 to generate manganese-mineralized tumor cells. The cell-based composite was formed by combining amorphous MnO2 with the membrane structure of cells based on the redox reaction between KMnO4 and tumor cells. The MnO2 layer induced a stronger phagocytosis of ovalbumin (OVA)-expressing tumor cells by antigen presenting cells than formaldehyde-fixed cells did, resulting in specific antigen-presentation in vitro and in vivo and subsequent immune responses. Intratumoral therapy with B16F10@MnO2 inhibited B16F10 tumor growth. Moreover, the infiltration of CD8+ T cells within B16F10 solid tumors and the proportion of central memory T cells both increased in B16F10@MnO2 treated tumor-bearing mice, indicating enhanced adaptive immunity. This study provides a convenient and effective method to improve whole-cell-based anti-tumor therapy.


Subject(s)
Cancer Vaccines , Melanoma, Experimental , Mice , Animals , CD8-Positive T-Lymphocytes , Manganese , Manganese Compounds/pharmacology , Melanoma, Experimental/therapy , Oxides/pharmacology , Immunotherapy/methods
12.
Natl Sci Rev ; 10(10): nwad200, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37671320

ABSTRACT

Photosynthetic energy conversion for high-energy chemicals generation is one of the most viable solutions in the quest for sustainable energy towards carbon neutrality. Microalgae are fascinating photosynthetic organisms, which can directly convert solar energy into chemical energy and electrical energy. However, microalgal photosynthetic energy has not yet been applied on a large scale due to the limitation of their own characteristics. Researchers have been inspired to couple microalgae with synthetic materials via biomimetic assembly and the resulting microalgae-material hybrids have become more robust and even perform new functions. In the past decade, great progress has been made in microalgae-material hybrids, such as photosynthetic carbon dioxide fixation, photosynthetic hydrogen production, photoelectrochemical energy conversion and even biochemical energy conversion for biomedical therapy. The microalgae-material hybrid offers opportunities to promote artificially enhanced photosynthesis research and synchronously inspires investigation of biotic-abiotic interface manipulation. This review summarizes current construction methods of microalgae-material hybrids and highlights their implication in energy and health. Moreover, we discuss the current problems and future challenges for microalgae-material hybrids and the outlook for their development and applications. This review will provide inspiration for the rational design of the microalgae-based semi-natural biohybrid and further promote the disciplinary fusion of material science and biological science.

13.
Carbohydr Polym ; 319: 121174, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567692

ABSTRACT

Non-collagenous proteins (NCPs) in the extracellular matrix (ECM) of bone and dentin are known to play a critical regulatory role in the induction of collagen fibril mineralization and are embedded in hyaluronic acid (HA), which acts as a water-retaining glycosaminoglycan and provides necessary biochemical and biomechanical cues. Our previous study demonstrated that HA could regulate the mineralization degree and mechanical properties of collagen fibrils, yet its kinetics dynamic mechanism on mineralization is under debate. Here, we further investigated the role of HA on collagen fibril mineralization and the possible mechanism. The HA modification can significantly promote intrafibrillar collagen mineralization by reducing the electronegativity of the collagen surface to enhance calcium ions (Ca2+) binding capacity to create a local higher supersaturation. In addition, the HA also provides additional nucleation sites and shortens the induction time of amorphous calcium phosphate (ACP)-mediated hydroxyapatite (HAP) crystallization, which benefits mineralization. The acceleration effect of HA on intrafibrillar collagen mineralization is also confirmed in collagen hydrogel and in vitro dentin remineralization. These findings offer a physicochemical view of the regulation effect of carbohydrate polymers in the body on biomineralization, the fine prospect for an ideal biomaterial to repair collagen-mineralized tissues.

14.
Nat Commun ; 14(1): 4658, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537158

ABSTRACT

Material-based tactics have attracted extensive attention in driving the functional evolution of organisms. In aiming to design steerable bioartificial organisms to scavenge pathogenic waterborne viruses, we engineer Paramecium caudatum (Para), single-celled microorganisms, with a semiartificial and specific virus-scavenging organelle (VSO). Fe3O4 magnetic nanoparticles modified with a virus-capture antibody (MNPs@Ab) are integrated into the vacuoles of Para during feeding to produce VSOs, which persist inside Para without impairing their swimming ability. Compared with natural Para, which has no capture specificity and shows inefficient inactivation, the VSO-engineered Para (E-Para) specifically gathers waterborne viruses and confines them inside the VSOs, where the captured viruses are completely deactivated because the peroxidase-like nano-Fe3O4 produces virus-killing hydroxyl radicals (•OH) within acidic environment of VSO. After treatment, magnetized E-Para is readily recycled and reused, avoiding further contamination. Materials-based artificial organelles convert natural Para into a living virus scavenger, facilitating waterborne virus clearance without extra energy consumption.


Subject(s)
Viruses , Hydroxyl Radical , Peroxidase , Peroxidases , Antibodies, Viral
15.
Biomaterials ; 301: 122266, 2023 10.
Article in English | MEDLINE | ID: mdl-37597298

ABSTRACT

Conductive nano-materials and electrical stimulation (ES) have been recognized as a synergetic therapy for ordinary excitable tissue repair. It is worth noting that hard tissues, such as bone tissue, possess bioelectrical properties as well. However, insufficient attention is paid to the synergetic therapy for bone defect regeneration via conductive biomaterials with ES. Here, a novel nano-conductive hydrogel comprising calcium phosphate-PEDOT:PSS-magnesium titanate-methacrylated alginate (CPM@MA) was synthesized for electro-inspired bone tissue regeneration. The nano-conductive CPM@MA hydrogel has demonstrated excellent electroactivity, biocompatibility, and osteoinductivity. Additionally, it has the potential to enhance cellular functionality by increasing endogenous transforming growth factor-beta1 (TGF-ß1) and activating TGF-ß/Smad2 signaling pathway. The synergetic therapy could facilitate intracellular calcium enrichment, resulting in a 5.8-fold increase in calcium concentration compared to the control group in the CPM@MA ES + group. The nano-conductive CPM@MA hydrogel with ES could significantly promote electro-inspired bone defect regeneration in vivo, uniquely allowing a full repair of rat femoral defect within 4 weeks histologically and mechanically. These results demonstrate that our synergistic strategy effectively promotes bone restoration, thereby offering potential advancements in the field of electro-inspired hard tissue regeneration using novel nano-materials with ES.


Subject(s)
Calcium , Hydrogels , Animals , Rats , Osteogenesis , Bone Regeneration , Bone and Bones
16.
Nature ; 619(7969): 293-299, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286604

ABSTRACT

Although organic-inorganic hybrid materials have played indispensable roles as mechanical1-4, optical5,6, electronic7,8 and biomedical materials9-11, isolated organic-inorganic hybrid molecules (at present limited to covalent compounds12,13) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds14 and inorganic ionic bonds15 in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic-inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid-base reaction provides a TA-CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA-CCO complexes to form a covalent-ionic bicontinuous structure within the resulting hybrid material, poly(TA-CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+-CO32- bonds in the ionic network and S-S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA-CCO) goes beyond current classifications of materials to generate an 'elastic ceramic plastic'. The bottom-up creation of organic-inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic-inorganic hybrid materials.

17.
ACS Biomater Sci Eng ; 9(4): 1730-1732, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37032636

Subject(s)
Biomineralization
18.
ACS Appl Mater Interfaces ; 15(16): 19976-19988, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37058439

ABSTRACT

Therapeutic bioengineering based on stem cell therapy holds great promise in biomedical applications. However, the application of this treatment is limited in orthopedics because of their poor survival, weak localization, and low cell retention. In this work, magneto-mechanical bioengineered cells consisting of magnetic silica nanoparticles (MSNPs) and mesenchymal stem cells (MSCs) are prepared to alleviate osteoporosis. The magneto-mechanical bioengineered MSCs with spatial localization, cell retention, and directional tracking capabilities could be mediated by a guided magnetic field (MF) in vitro and in vivo. Furthermore, high uptake rates of the MSNPs ensure the efficient construction of magnetically controlled MSCs within 2 h. In conjunction with external MF, the magneto-mechanical bioengineered MSCs have the potential for the activation of the YAP/ß-catenin signaling pathway, which could further promote osteogenesis, mineralization, and angiogenesis. The synergistic effects of MSNPs and guided MF could also decline bone resorption to rebalance bone metabolism in bone loss diseases. In vivo experiments confirm that the functional MSCs and guided MF could effectively alleviate postmenopausal osteoporosis, and the bone mass of the treated osteoporotic bones by using the bioengineered cells for 6 weeks is nearly identical to that of the healthy ones. Our results provide a new avenue for osteoporosis management and treatment, which contribute to the future advancement of magneto-mechanical bioengineering and treatment.


Subject(s)
Osteoporosis , Humans , Cell Differentiation , Osteoporosis/drug therapy , Stem Cells , Osteogenesis , Magnetic Fields
19.
Adv Healthc Mater ; 12(12): e2201548, 2023 05.
Article in English | MEDLINE | ID: mdl-36867636

ABSTRACT

Inspired by the bionic mineralization theory, organic-inorganic composites with hydroxyapatite nanorods orderly arranged along collagen fibrils have attracted extensive attention. Planted with an ideal bone scaffold will contribute greatly to the osteogenic microenvironment; however, it remains challenging to develop a biomimetic scaffold with the ability to promote intrafibrillar mineralization and simultaneous regulation of immune microenvironment in situ. To overcome these challenges, a scaffold containing ultra-small particle size calcium phosphate nanocluster (UsCCP) is prepared, which can enhance bone regeneration through the synergetic effect of intrafibrillar mineralization and immunomodulatory. By efficient infiltration into collagen fibrils, the UsCCP released from the scaffold achieves intrafibrillar mineralization. It also promotes the M2-type polarization of macrophages, leading to an immune microenvironment with both osteogenic and angiogenic potential. The results confirm that the UsCCP scaffold has both intrafibrillar mineralization and immunomodulatory effects, making it a promising candidate for bone regeneration.


Subject(s)
Calcium Phosphates , Collagen , Calcium Phosphates/pharmacology , Extracellular Matrix , Bone Regeneration
20.
Mater Today Bio ; 19: 100609, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36969694

ABSTRACT

Intravenously administered nanocarriers suffer from off-target distribution, pre-targeting drug leakage, and rapid clearance, limiting their efficiency in tumor eradication. To bypass these challenges, an injectable hydrogel with time- and temperature-dependent viscosity enhancement behavior and self-healing property are reported to assist in the retention of the hydrogel in the tumor site after injection. The cancer cell membrane (CCM) and sorafenib are embedded into the hydrogel to elicit local tumor-specific immune responses and induce cancer cell apoptosis, respectively. In addition, hyaluronic acid (HA) coated Bi2S3 nanorods (BiH) are incorporated within the hydrogel to afford prolonged multi-cycle local photothermal therapy (PTT) due to the reduced diffusion of the nanorods to the surrounding tissues as a result of HA affinity toward cancer cells. The results show the promotion of immunostimulatory responses by both CCM and PTT through the release of inflammatory cytokines from immune cells, which allows localized and complete ablation of the breast tumor in an animal model by a single injection of the hydrogel. Moreover, the BiH renders strong antibacterial activity to the hydrogel, which is crucial for the clinical translation of injectable hydrogels as it minimizes the risk of infection in the post-cancer lesion formed by PTT-mediated cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...