Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 3037-3048, 2023 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-37584146

ABSTRACT

Protein Engineering is a core compulsory course of biotechnology major, which is the first-class undergraduate major being constructed in Shanxi Province. In view of the problems of single teaching mode of Protein Engineering, such as insufficient students' participation, short teaching time, and expensive experiment cost, the course team carried out the reform and practice of teaching mode for this course, and put forward a new teaching strategy. Under the guidance of the "Golden Course" standard for advancement, innovation and challenge, the course team developed the materials for massive open online courses (MOOC), and carried out the online and offline mixed teaching of Protein Engineering based on BOPPPS+flipped classroom by using the Chao-Xing Fan-Ya network teaching platform. Through this, a comprehensive, systematic and dynamic new teaching system of Protein Engineering was developed. Using the teaching mode based on BOPPPS+flipped classroom, the offline classroom teaching was combined with students' online self-study and homework completion, chapter test and discussion, and this mixed teaching mode was fully integrated into the flipped classroom. After three rounds of teaching practice, the course team had developed a complete, reproducible, scientific and reasonable online and offline mixed teaching mode, which included course materials preparation, exploring experiment guidance, classroom discussion design and course performance evaluation. The online and offline mixed teaching mode of Protein Engineering based on BOPPPS+flipped classroom was helpful for students to improve their autonomous learning ability, to be deeply engaged in the whole teaching process, and to develop a comprehensive and profound understanding of Protein Engineering. This teaching mode improved the teaching quality of Protein Engineering, and facilitated students to learn other follow-up professional courses. Moreover, it provides a reference for the course teaching reform.


Subject(s)
Learning , Students , Humans
2.
Biotechnol Biofuels Bioprod ; 16(1): 45, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918944

ABSTRACT

BACKGROUND: Plant carotenoids are essential for human health, having wide uses in dietary supplements, food colorants, animal feed additives, and cosmetics. With the increasing demand for natural carotenoids, plant carotenoids have gained great interest in both academic and industry research worldwide. Orange-fleshed sweetpotato (Ipomoea batatas) enriched with carotenoids is an ideal feedstock for producing natural carotenoids. However, limited information is available regarding the molecular mechanism responsible for carotenoid metabolism in sweetpotato tuberous roots. RESULTS: In this study, metabolic profiling of carotenoids and gene expression analysis were conducted at six tuberous root developmental stages of three sweetpotato varieties with different flesh colors. The correlations between the expression of carotenoid metabolic genes and carotenoid levels suggested that the carotenoid cleavage dioxygenase 4 (IbCCD4) and 9-cis-epoxycarotenoid cleavage dioxygenases 3 (IbNCED3) play important roles in the regulation of carotenoid contents in sweetpotato. Transgenic experiments confirmed that the total carotenoid content decreased in the tuberous roots of IbCCD4-overexpressing sweetpotato. In addition, IbCCD4 may be regulated by two stress-related transcription factors, IbWRKY20 and IbCBF2, implying that the carotenoid accumulation in sweeetpotato is possibly fine-tuned in responses to stress signals. CONCLUSIONS: A set of key genes were revealed to be responsible for carotenoid accumulation in sweetpotato, with IbCCD4 acts as a crucial player. Our findings provided new insights into carotenoid metabolism in sweetpotato tuberous roots and insinuated IbCCD4 to be a target gene in the development of new sweetpotato varieties with high carotenoid production.

3.
Plant Physiol Biochem ; 194: 742, 2023 01.
Article in English | MEDLINE | ID: mdl-36384930

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors-in-Chief. A large part of the article is highly similar to the paper previously published by Wenqian Hou, Lei Ren, Yang Zhang, Haoyun Sun, Tianye Shi, Yulan Gu, Aimin Wang, Daifu Ma, Zongyun Li and Lei Zhang in Scientia Horticulturae 288 (2021) 110374 https://doi.org/10.1016/j.scienta.2021.110374. In particular, a large part of the two articles shows a study on the same gene family in the same plant, with similar methodological approaches, resulting in a series of highly similar figures. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

4.
Front Genet ; 13: 1077958, 2022.
Article in English | MEDLINE | ID: mdl-36523761

ABSTRACT

B-box (BBX) which are a class of zinc finger transcription factors, play an important role in regulating of photoperiod, photomorphogenesis, and biotic and abiotic stresses in plants. However, there are few studies on the involvement of BBX transcription factors in response to abiotic stresses in sweet potato. In this paper, we cloned the DNA and promoter sequences of IbBBX28. There was one B-box conserved domain in IbBBX28, and the expression of IbBBX28 was induced under drought stress. Under drought stress, compared to wild type Arabidopsis, the protective enzyme activities (SOD, POD, and CAT) were all decreased in IbBBX28-overexpression Arabidopsis but increased in the mutant line bbx28, while the MDA content was increased in the IbBBX28-overexpression Arabidopsis and decreased in the bbx28. Moreover, the expression levels of the resistance-related genes showed the same trend as the protective enzyme activities. These results showed that IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis. Additionally, the yeast two-hybrid and BiFC assays verified that IbBBX28 interacted with IbHOX11 and IbZMAT2. The above results provide important clues for further studies on the role of IbBBX28 in regulating the stress response in sweet potato.

5.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077355

ABSTRACT

Salt stress has a serious impact on normal plant growth and yield. Carotenoid cleavage dioxygenase (CCD) degrades carotenoids to produce apocarotenoids, which are involved in plant responses to biotic and abiotic stresses. This study shows that the expression of sweet potato IbCCD4 was significantly induced by salt and dehydration stress. The heterologous expression of IbCCD4 in Arabidopsis was induced to confirm its salt tolerance. Under 200 mM NaCl treatment, compared to wild-type plants, the rosette leaves of IbCCD4-overexpressing Arabidopsis showed increased anthocyanins and carotenoid contents, an increased expression of most genes in the carotenoid metabolic pathway, and increased malondialdehyde (MDA) levels. IbCCD4-overexpressing lines also showed a decreased expression of resistance-related genes and a lower activity of three antioxidant enzymes: peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). These results indicate that IbCCD4 reduced salt tolerance in Arabidopsis, which contributes to the understanding of the role of IbCCD4 in salt stress.


Subject(s)
Arabidopsis , Dioxygenases , Ipomoea batatas , Anthocyanins/metabolism , Arabidopsis/metabolism , Carotenoids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics
6.
Plant Physiol Biochem ; 188: 109-122, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36029691

ABSTRACT

B-box (BBX) proteins constitute a class of transcription factors that play vital roles in the regulation of photoperiod flowering, photomorphogenesis, and the response to biotic and abiotic stresses. In this paper, a total of 32 BBX genes were identified in Ipomoea trifida, a wild ancestor of sweetpotato. Chromosome localization analysis showed that these 32 ItfBBX genes were distributed unevenly across 12 chromosomes. The ItfBBX gene family members were classified into five groups according to their phylogenetic relationships and structural features. Predictions of cis-elements revealed that the promoter sequences of the ItfBBX genes contain light response, stress response, hormone response and other elements. Synteny analysis revealed evidence of 26 segmental duplication events and only one tandem duplication event. Tissue-specific and abiotic stress-response expression profiles were analysed, and the results were confirmed via RT-qPCR. Overall, ItfBBX genes may play vital roles in the stress response. We chose IbBBX28 for further study and revealed that IbBBX28 negatively regulates the flowering time of IbBBX28-overexpressing Arabidopsis under long-day conditions. Our study provides references for characterizing the function of BBX genes in sweetpotato.


Subject(s)
Arabidopsis , Ipomoea batatas , Ipomoea , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Genome, Plant/genetics , Ipomoea/genetics , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics
7.
J Funct Biomater ; 13(3)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35997451

ABSTRACT

Drug-loaded microspheres are an ideal bone tissue delivery material. In this study, a biodegradable Schiff base chitosan-polylactide was used as the encapsulation material to prepare drug-loaded microspheres as biocompatible carriers for controlled vancomycin release. In this regard, Schiff base chitosan was prepared by the Schiff base method, and then different proportions of the Schiff base chitosan-polylactide polymer were prepared by ring-opening polymerization. Drug-loaded microspheres were prepared by the W/O emulsion method, and the polymers and polymer microspheres were characterized and studied by NMR, IR, and antibacterial methods. The drug loading and release rates of microspheres were determined to investigate the drug loading, encapsulation efficiency, and release rate of drug microspheres at different ratios. In this study, different proportions of Schiff base chitosan-polylactic acid materials are successfully prepared, and vancomycin-loaded microspheres are successfully prepared using them as carriers. This study proves that the materials have antibacterial activities against Staphylococcus aureus and Escherichia coli. The particle size of drug-loaded microspheres was below 10 µm, and the particle size decreased with decreasing molecular weight. The obtained results show that 1:100 microspheres have the highest drug-loading and encapsulation efficiencies, the drug-loaded microspheres have no burst release within 24 h, and the release quantity reaches more than 20%. After 30 days of release, the release amounts of 1:10, 1:20, 1:40, 1:60, and 1:100 drug-loaded microspheres were 64.80 ± 0.29%, 54.43 ± 0.54%, 44.60 ± 0.43%, 42.53 ± 0.40% and 69.73 ± 0.45%, respectively, and the release amount of 1:100 was the highest.

8.
Biomater Adv ; 137: 212864, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929282

ABSTRACT

Osseointegration between implants and bone tissue lays the foundation for the long-term stability of implants. The incorporation of a porous structure and local slow release of siRNA to silence casein kinase-2 interacting protein-1 (CKIP-1), a downregulator of bone formation, is expected to promote osseointegration. Here, porous implants with a porous outer layer and dense inner core were prepared by metal coinjection molding (MIM). Mg-doped calcium phosphate nanoparticles (CaPNPs)-grafted arginine-glycine-aspartate cell adhesion sequence (RGD) and transcribed activator (TAT) (MCPRT)/CKIP-1 siRNA complex and polylysine (PLL) were coated onto the surface of the porous implants by layer-by-layer (LBL) self-deposition. The in vitro results showed that the MCPRT-siRNA coating promoted MG63 cell adhesion and proliferation, enhanced the protein expressions (ALP and OC) and bone formation-related gene expression (OPN, OC and COL-1α) in vitro. The in vivo results demonstrated that the porous structure enhanced bone ingrowth and that the local slow release of MCPRT-siRNA accelerated new bone formation at the early stage. The porous structure coupled with local CKIP-1 siRNA delivery constitutes a promising approach to achieve faster and stronger osseointegration for dental implants.


Subject(s)
Osseointegration , Titanium , Coated Materials, Biocompatible/pharmacology , Porosity , RNA, Small Interfering/genetics , Titanium/pharmacology
9.
Int J Biol Macromol ; 217: 922-930, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35908674

ABSTRACT

This study was performed to promote the clinical application of Panax notoginseng saponins (PNS), which present anti-inflammatory and antitumor activities, and provided insights for the preparation of controlled-release dosage forms of traditional Chinese medicine. A series of drug-loaded microspheres with degradable amphiphilic polymer material polyethylene glycol monomethyl ether-polylactic acid (mPEG-PLA) as the carrier was synthesized. The degradation, sustained-release behavior, and biocompatibility of the drug-loaded microspheres were studied through in vitro release, degradation, hemolysis, anticoagulation, and cytotoxicity experiments. The pharmacological activities of the microspheres were studied through anti-inflammatory and antitumor experiments. The results showed that the best carrier material was mPEG2k-PLA (1:9), with an average particle size of 3.47 ± 0.35 µm, a drug load of 5.50 ± 0.28 %, and an encapsulation efficiency of 38.52 ± 1.93 %. This material could be released stably for approximately 24 days and degrade in approximately 60 days. Moreover, the microspheres had good biocompatibility and anti-inflammatory and antitumor activities.


Subject(s)
Panax notoginseng , Saponins , Anti-Inflammatory Agents/pharmacology , Microspheres , Polyesters , Saponins/pharmacology
10.
BMC Plant Biol ; 22(1): 226, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501691

ABSTRACT

BACKGROUND: Kelch repeat F-box (KFB) proteins play vital roles in the regulation of multitudinous biochemical and physiological processes in plants, including growth and development, stress response and secondary metabolism. Multiple KFBs have been characterized in various plant species, but the family members and functions have not been systematically identified and analyzed in potato. RESULTS: Genome and transcriptome analyses of StKFB gene family were conducted to dissect the structure, evolution and function of the StKFBs in Solanum tuberosum L. Totally, 44 StKFB members were identified and were classified into 5 groups. The chromosomal localization analysis showed that the 44 StKFB genes were located on 12 chromosomes of potato. Among these genes, two pairs of genes (StKFB15/16 and StKFB40/41) were predicted to be tandemly duplicated genes, and one pair of genes (StKFB15/29) was segmentally duplicated genes. The syntenic analysis showed that the KFBs in potato were closely related to the KFBs in tomato and pepper. Expression profiles of the StKFBs in 13 different tissues and in potato plants with different treatments uncovered distinct spatial expression patterns of these genes and their potential roles in response to various stresses, respectively. Multiple StKFB genes were differentially expressed in yellow- (cultivar 'Jin-16'), red- (cultivar 'Red rose-2') and purple-fleshed (cultivar 'Xisen-8') potato tubers, suggesting that they may play important roles in the regulation of anthocyanin biosynthesis in potato. CONCLUSIONS: This study reports the structure, evolution and expression characteristics of the KFB family in potato. These findings pave the way for further investigation of functional mechanisms of StKFBs, and also provide candidate genes for potato genetic improvement.


Subject(s)
Solanum tuberosum , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/metabolism , Solanum tuberosum/metabolism , Stress, Physiological
11.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35100332

ABSTRACT

Ananas comosus var. bracteatus f. tricolor (GL1) is a red pineapple accession whose mostly green leaves with chimeric white leaf margins turn red in spring and autumn and during flowering. It is an important ornamental plant and ideal plant research model for anthocyanin metabolism, chimeric leaf development, and photosynthesis. Here, we generated a highly contiguous chromosome-scale genome assembly for GL1 and compared it with other 3 published pineapple assemblies (var. comosus accessions MD2 and F153, and var. bracteatus accession CB5). The GL1 assembly has a total size of ∼461 Mb, with a contig N50 of ∼2.97 Mb and Benchmarking Universal Single-Copy Ortholog score of 97.3%. More than 99% of the contigs are anchored to 25 pseudochromosomes. Compared with the other 3 published pineapple assemblies, the GL1 assembly was confirmed to be more continuous. Our evolutionary analysis showed that the Bromeliaceae and Poaceae diverged from their nearest common ancestor ∼82.36 million years ago (MYA). Population structure analysis showed that while GL1 has not undergone admixture, bracteatus accession CB5 has resulted from admixture of 3 species of Ananas. Through classification of orthogroups, analysis of genes under positive selection, and analysis of presence/absence variants, we identified a series of genes related to anthocyanin metabolism and development of chimeric leaves. The structure and evolution of these genes were compared among the published pineapple assemblies with reveal candidate genes for these traits. The GL1 genome assembly and its comparisons with other 3 pineapple genome assemblies provide a valuable resource for the genetic improvement of pineapple and serve as a model for understanding the genomic basis of important traits in different pineapple varieties and other pan-cereal crops.


Subject(s)
Ananas , Genome, Plant , Pigmentation , Plant Leaves , Ananas/genetics , Chimera/genetics , Genomics/methods , Photosynthesis
12.
Materials (Basel) ; 14(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683550

ABSTRACT

The Polyacrylonitrile (PAN)/g-C3N4/CdS nanofiber sono-photocatalysts were successfully synthesized by an ordinary electrospining-chemical deposition method. The PAN/g-C3N4/CdS heterojunction nanofibers constructed with the CdS nanoparticles deposited on the PAN/g-C3N4 nanofibers. The g-C3N4/CdS heterojunction increase of light absorption and the construction of heterojunction can depress recombination of charge carrier and PAN nanofibers improve the recyclability successfully. Finally, a highly effective photocatalytic activity was performed by degradation of Rhodamine B (RhB) in visible light irradiation. Furthermore, an ultrasonic method is introduced into the sono-photocatalytic system to enhance the degradation efficiency of RhB ascribed to the synergistic effect of ultrasound.

13.
Hortic Res ; 8(1): 226, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34654802

ABSTRACT

Crops face increased risk from heat stress due to climate change. Potato (Solanum tuberosum L.) tubers grown in hot summers often have defects including pre-harvest sprouting ("heat sprouts"). We have used 18 potato cultivars to investigate whether heat stress (HS) conditions alone could cause heat sprouting and dormancy changes in tubers. We also examined transcriptomic responses of potato to HS and whether these responses are like those induced by postharvest sprouting. We demonstrated that HS alone caused heat sprouts and shortened postharvest dormancy period, heat-sprouted tubers became dormant after harvest, and cultivars varied substantially for producing heat spouts but there was no clear association with cultivar maturity earliness. Cultivar Innovator did not show any heat sprouts and still had long dormancy. Dormancy-associated genes (DOG1 and SLP) were downregulated in HS tubers like in postharvest sprouting tubers. We have identified 1201 differentially expressed genes, 14 enriched GO terms and 12 enriched KEGG pathways in response to HS in growing tubers of 'Russet Burbank'. Transcriptomic response of 'Russet Burbank' to HS showed significant similarities to that of postharvest non-HS sprouted tubers. Gibberellin biosynthesis pathway was enriched in heat-stressed tubers and was likely involved in heat sprouting and dormancy release. Heat sprouting and postharvest sprouting shared common candidate genes and had significant similarity in gene expression. Our study has significance for selecting potato cultivars for farming, planning storage and utilization of heat-stressed tubers, identifying sprouting-related genes, understanding heat-stress biology, and breeding heat-tolerant potato cultivars, especially for sustainable potato production under climate change.

14.
Plant Physiol Biochem ; 156: 323-332, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32998099

ABSTRACT

Purple-fleshed sweetpotato (PFSP) accumulates high amounts of anthocyanins that are beneficial to human health. Although biosynthesis of such secondary metabolites has been well studied in aboveground organs of many plants, the mechanisms underlying anthocyanin accumulation in underground tuberous roots of sweetpotato are less understood. To identify genes and metabolites involved in anthocyanin accumulation in sweetpotato, we performed comparative transcriptomic and metabolomic analysis of (PFSP) and white-fleshed sweetpotato (WFSP). Anthocyanin-targeted metabolome analysis revealed that delphinidin, petunidin, and rosinidin were the key metabolites conferring purple pigmentation in PFSP as they were highly enriched in PFSP but absent in WFSP. Transcriptomic analysis identified 358 genes that were potentially implicated in multiple pathways for the biosynthesis of anthocyanins. Although most of the genes were previously known for their roles in anthocyanin biosynthesis, we identified 26 differentially expressed genes that are involved in Aux/IAA-ARF signaling. Gene-metabolite correlation analysis also revealed novel genes that are potentially involved in the anthocyanin accumulation in sweetpotato. Taken together, this study provides insights into the genes and metabolites underlying anthocyanin enrichment in underground tuberous roots of sweetpotato.


Subject(s)
Anthocyanins/biosynthesis , Ipomoea batatas , Metabolome , Plant Roots/metabolism , Transcriptome , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Pigmentation
15.
Plant Physiol Biochem ; 154: 379-386, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32623093

ABSTRACT

Sweetpotato (Ipomoea batatas. L) is an important food crop, harvested for its nutrient-rich tuberous roots. Drought and salt stresses are two major factors limiting the sweetpotato production. Since microRNAs (miRNAs) are well known to play crucial roles in regulation of plant stress responses, quantitative profiling of miRNA expression under stress conditions will facilitate identification and genetic manipulation of novel miRNAs to improve stress tolerance. Real-time quantitative reverse transcription PCR (qRT-PCR) is a commonly used tool for this purpose, but not without challenges. Although stem-loop and poly(A)-tail modified qRT-PCR methods were developed for characterizing miRNA expression, accurate profiling of miRNAs is still difficult in many plant species because of a lack of reliable reference genes for normalizing miRNA transcripts. To identify reference genes that are suitable for normalizing miRNA expression in sweetpotato, the expression stability of eight candidate miRNAs and two commonly used reference genes were tested in 96 samples involving four tissues and two cultivars under drought and salt stress treatments. Data analysis using the geNorm, NormFinder and Bestkeeper algorithms demonstrated that miRn60, miR482, and their combination were reliable references. We further validated the reference genes by expression analysis of the well-characterized miR319 and miR156 that regulate drought and salt stress responses, respectively. The reference genes identified in this study will facilitate future miRNA analysis under abiotic stress conditions in sweetpotato.


Subject(s)
Gene Expression Regulation, Plant , Ipomoea batatas , MicroRNAs/genetics , Stress, Physiological , Gene Expression Profiling , Ipomoea batatas/genetics , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Reverse Transcription
16.
Mol Biol Rep ; 47(6): 4311-4321, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32488578

ABSTRACT

Heat stress has a severe impact on potato growth and tuberization process, always resulting in the decrease of tuber yield and quality. Therefore, it is of great significance for potato breeding to illuminate the mechanism of heat stress on potato and explore heat resistant genes. In this study, two cDNA libraries from normal potato leaves (20 °C day/18 °C night) and potato leaves with 3 days of heat treatment (35 °C day/28 °C night) were constructed respectively. Totally, 1420 differentially expressed genes (DEGs) were identified. The expression patterns of 12 randomly selected genes detected using droplet digital PCR agreed with the sequencing data. Gene ontology analysis showed that these DEGs were clustered into 49 different GO types, reflecting the functional diversity of the heat stress response genes. The results of KEGG pathway enrichment showed the potential biological pathways in which the DEGs were involved, indicating that these pathways may be involved in heat tolerance regulation. Most potato heat transcription factors (StHsfs) and heat shock proteins (StHsps) were not expressed efficiently based on expression profile of these DEGs. StHsp26-CP and StHsp70 were markedly increased after 3 days of heat treatment. These data will be useful for further understanding the molecular mechanisms of potato plant tolerance to heat stress and provide a basis for breeding heat-tolerance varieties.


Subject(s)
Heat-Shock Response/genetics , Solanum tuberosum/genetics , Droughts , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Gene Library , Gene Ontology , Genes, Plant/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcriptome/genetics
17.
BMC Plant Biol ; 19(1): 232, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159725

ABSTRACT

BACKGROUND: Compared with white-fleshed sweetpotato (WFSP), purple-fleshed sweetpotato (PFSP) is a desirable resource for functional food development because of the abundant anthocyanin accumulation in its tuberous roots. Some studies have shown that the expression regulation mediated by miRNA plays an important role in anthocyanin biosynthesis in plants. However, few miRNAs and their corresponding functions related to anthocyanin biosynthesis in tuberous roots of sweetpotato have been known. RESULTS: In this study, small RNA (sRNA) and degradome libraries from the tuberous roots of WFSP (Xushu-18) and PFSP (Xuzishu-3) were constructed, respectively. Totally, 191 known and 33 novel miRNAs were identified by sRNA sequencing, and 180 target genes cleaved by 115 known ib-miRNAs and 5 novel ib-miRNAs were identified by degradome sequencing. Of these, 121 miRNAs were differently expressed between Xushu-18 and Xuzishu-3. Integrated analysis of sRNA, degradome sequencing, GO, KEGG and qRT-PCR revealed that 26 differentially expressed miRNAs and 36 corresponding targets were potentially involved in the anthocyanin biosynthesis. Of which, an inverse correlation between the expression of ib-miR156 and its target ibSPL in WFSP and PFSP was revealed by both qRT-PCR and sRNA sequencing. Subsequently, ib-miR156 was over-expressed in Arabidopsis. Interestingly, the ib-miR156 over-expressing plants showed suppressed abundance of SPL and a purplish phenotype. Concomitantly, upregulated expression of four anthocyanin pathway genes was detected in transgenic Arabidopsis plants. Finally, a putative ib-miRNA-target model involved in anthocyanin biosynthesis in sweetpotato was proposed. CONCLUSIONS: The results represented a comprehensive expression profiling of miRNAs related to anthocyanin accumulation in sweetpotato and provided important clues for understanding the regulatory network of anthocyanin biosynthesis mediated by miRNA in tuberous crops.


Subject(s)
Anthocyanins/biosynthesis , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Anthocyanins/genetics , High-Throughput Nucleotide Sequencing , Ipomoea batatas/metabolism , MicroRNAs/metabolism , Plant Roots/genetics , Plant Roots/metabolism , RNA, Plant/metabolism , Sequence Analysis, RNA
18.
Physiol Mol Biol Plants ; 24(4): 605-616, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30042616

ABSTRACT

Low temperature causes a negative impact on plant growth and development, but plants evolve a series of mechanisms to respond to chilling stress, and one of them is CBF [C-repeat (CRT)/dehydration-responsive element (DRE) binding factor] gene family which has been well studied in different crops. In this paper, a new CBF1 gene, named as SpCBF1, was isolated from frost-tolerant Solanum pinnatisectum by PCR and analyzed for its function in cold-tolerance by over-expression technique. The ORF of SpCBF1 was 666 bp long and encoded a protein of 221 amino acids with a predicted molecular mass 24.5821 kDa and theoretically isoelectric point 5.0. SpCBF1 protein contained a highly conserved specific AP2/ERF domain. SpCBF1 was expressed in all tested tissues with the highest level in tuber and the lowest in root, and induced by chilling stress (0 °C). Under natural low temperature condition (1-10 °C), plants over-expressing SpCBF1 (OE) exhibited slighter necrotic lesion and lower necrotic injury, compared with untransformed Solanum tuberosum cv. Désirée (WT) and antisense-StCBF1 control lines. Over-expression of CBF1 increased the level of COR (cold-regulated) gene transcripts in OE lines, and the physiological indexes related to cold tolerance like the contents of SOD, soluble protein, MDA, proline and soluble sugar were higher in OE lines than in WT except RWC which was lower. All these results indicated that SpCBF1 gene plays a promoting role in potato responding to cold stress.

19.
Front Plant Sci ; 7: 490, 2016.
Article in English | MEDLINE | ID: mdl-27148315

ABSTRACT

Heat shock transcription factors (Hsfs) play vital roles in the regulation of tolerance to various stresses in living organisms. To dissect the mechanisms of the Hsfs in potato adaptation to abiotic stresses, genome and transcriptome analyses of Hsf gene family were investigated in Solanum tuberosum L. Twenty-seven StHsf members were identified by bioinformatics and phylogenetic analyses and were classified into A, B, and C groups according to their structural and phylogenetic features. StHsfs in the same class shared similar gene structures and conserved motifs. The chromosomal location analysis showed that 27 Hsfs were located in 10 of 12 chromosomes (except chromosome 1 and chromosome 5) and that 18 of these genes formed 9 paralogous pairs. Expression profiles of StHsfs in 12 different organs and tissues uncovered distinct spatial expression patterns of these genes and their potential roles in the process of growth and development. Promoter and quantitative real-time polymerase chain reaction (qRT-PCR) detections of StHsfs were conducted and demonstrated that these genes were all responsive to various stresses. StHsf004, StHsf007, StHsf009, StHsf014, and StHsf019 were constitutively expressed under non-stress conditions, and some specific Hsfs became the predominant Hsfs in response to different abiotic stresses, indicating their important and diverse regulatory roles in adverse conditions. A co-expression network between StHsfs and StHsf -co-expressed genes was generated based on the publicly-available potato transcriptomic databases and identified key candidate StHsfs for further functional studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...