Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(4): e0249909, 2021.
Article in English | MEDLINE | ID: mdl-33848312

ABSTRACT

Congenital hearing loss affects 1 in every 1000 births, with genetic mutations contributing to more than 50% of all cases. X-linked nonsyndromic hereditary hearing loss is associated with six loci (DFNX1-6) and five genes. Recently, the missense mutation (c.1771G>A, p.Gly591Ser) in COL4A6, encoding the basement membrane (BM) collagen α6(IV) chain, was shown to be associated with X-linked congenital nonsyndromic hearing loss with cochlear malformation. However, the mechanism by which the COL4A6 mutation impacts hereditary hearing loss has not yet been elucidated. Herein, we investigated Col4a6 knockout (KO) effects on hearing function and cochlear formation in mice. Immunohistochemistry showed that the collagen α6(IV) chain was distributed throughout the mouse cochlea within subepithelial BMs underlying the interdental cells, inner sulcus cells, basilar membrane, outer sulcus cells, root cells, Reissner's membrane, and perivascular BMs in the spiral limbus, spiral ligament, and stria vascularis. However, the click-evoked auditory brainstem response analysis did not show significant changes in the hearing threshold of Col4a6 KO mice compared with wild-type (WT) mice with the same genetic background. In addition, the cochlear structures of Col4a6 KO mice did not exhibit morphological alterations, according to the results of high-resolution micro-computed tomography and histology. Hence, loss of Col4a6 gene expression in mice showed normal click ABR thresholds and normal cochlear formation, which differs from humans with the COL4A6 missense mutation c.1771G>A, p.Gly591Ser. Therefore, the deleterious effects in the auditory system caused by the missense mutation in COL4A6 are likely due to the dominant-negative effects of the α6(IV) chain and/or α5α6α5(IV) heterotrimer with an aberrant structure that would not occur in cases with loss of gene expression.


Subject(s)
Cochlea/metabolism , Collagen Type IV/genetics , Deafness/pathology , Animals , Auditory Threshold , Cochlea/chemistry , Cochlea/diagnostic imaging , Cochlea/pathology , Collagen Type IV/deficiency , Deafness/congenital , Deafness/genetics , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation, Missense , Phenotype , Protein Multimerization , X-Ray Microtomography
2.
Front Microbiol ; 9: 530, 2018.
Article in English | MEDLINE | ID: mdl-29623075

ABSTRACT

Background: Statin has been widely used to treat hyperlipidemia because of its high potency in decreasing cholesterol levels. The present study aimed to examine the lipid-lowering effect of rosuvastatin and the composition, diversity and species abundance of gut microbiome in association with rosuvastatin efficacy. TRIAL REGISTRATION: ChiCTR-ORC-17013212 at the First Affiliated Hospital of Dalian Medical University, November 2, 2017. Results: Totally 64 patients with hyperlipidemia were treated with 10 mg/day of rosuvastatin for 4-8 weeks. Blood lipid indicators triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), low-density lipoprotein cholesterol (LDL-C) were measured before and after the treatment. Stool samples were collected right after the treatment. Following total DNA extraction and PCR amplification of 16S rRNA gene, Illumina sequencing was performed for gut microbiome identification, classification and characterization. All the patients showed a significant blood lipid reduction after the treatment. The patients were grouped according to parallel manner design. Group I had 33 patients whose blood lipid levels dropped to the normal levels from week 4, with 58.5% reduction in LDL-C and 26.6% reduction in TC. Group II had 31 patients whose blood lipid levels were still above the normal levels after 8 weeks therapy, but with 41.9% reduction in LDL-C and 31.2% reduction in TC. Based on Operational Taxonomic Unit data, Alpha-diversity by Shannon Index was different between the two groups, and beta-diversity by Principle Component Analysis exhibited separated patterns of the two groups. The differences were also observed in the relative-abundance at phylum, family, and genus levels of the two groups. Linear discriminate analysis illustrated that the abundance of 29 taxa was higher in group I, while the abundance of other 13 taxa was higher in group II. Phyla Firmicutes and Fusobacteria had negative correlation to LDL-C level, but Cyanobacteria and Lentisphaerae had a positive correlation to LDL-C level. Moreover, gender and age were also found somehow correlated to microbial community composition. Conclusion: Rosuvastatin therapy had different blood lipid-lowering effect on hyperlipidemia. The gut microbiota exhibited variation in community composition, diversity and taxa in association to rosuvastatin hypolipidemic effect. These results indicate that modulation of gut microflora, especially the negative/positive correlated species might strengthen statin efficacy in statin-inadequate patients.

3.
Sci Rep ; 7: 43035, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220870

ABSTRACT

Antibiotic administration, while facilitating clearance of targeted infections, also perturbs commensal microbial communities. Previous studies have all focused on the effects of short term use of antibiotics. Here, we focus on the effects of long term use of antibiotic on gut microbiota and immunity. BALB/c mice received saline or different doses of ceftriaxone sodium (100, 200 and 400 mg/mL) via daily gavage for 150 days. Alterations of fecal microbiota, small intestine histopathology, body weight, spleen index, serum IgG, mucus SIgA, IFN-γ/IL-4 ratio, CD4/CD8 ratio and CD4+CD25+ cells were evaluated. Long term ceftriaxone sodium administration resulted in gut microbiota dysbiosis, intestine histological lesions, growth inhibition, spleen index reducing. The immune defense ability reduced as serum IgG and mucus SIgA decreased significantly. Not only the immune defense, long term ceftriaxone administration also affected immune regulation. The IFN-γ/IL-4 and CD4/CD8 ratios increased, the CD4+CD25+ cells reduced on days 30 and 60 after ceftriaxone administration. However, after 90 days of ceftriaxone administration, the IFN-γ/IL-4, CD4/CD8 ratios and CD4+CD25+ cells restored, which indicated a new balance of immune regulation had been formed. Overall, these findings contribute to our understanding of long term antibiotic administration influencing gut microbiota and immunity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Gastrointestinal Microbiome/drug effects , Immune System/drug effects , Animals , Bacteria/genetics , Bacteria/isolation & purification , Body Weight/drug effects , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cytokines/blood , Feces/microbiology , Immune System/metabolism , Immunoglobulin G/blood , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Mice , Mice, Inbred BALB C , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Spleen/drug effects , Spleen/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...