Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 260(1): 6, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780795

ABSTRACT

MAIN CONCLUSION: TaAGL66, a MADS-box transcription factor highly expressed in fertile anthers of KTM3315A, regulates anther and/or pollen development, as well as male fertility in wheat with Aegilops kotschyi cytoplasm. Male sterility, as a string of sophisticated biological processes in higher plants, is commonly regulated by transcription factors (TFs). Among them, MADS-box TFs are mainly participated in the processes of floral organ formation and pollen development, which are tightly related to male sterility, but they have been little studied in the reproductive development in wheat. In our study, TaAGL66, a gene that was specifically expressed in spikes and highly expressed in fertile anthers, was identified by RNA sequencing and the expression profiles data of these genes, and qRT-PCR analyses, which was localized to the nucleus. Silencing of TaAGL66 under fertility condition in KTM3315A, a thermo-sensitive male sterile line with Ae. kotschyi cytoplasm, displayed severe fertility reduction, abnormal anther dehiscence, defective pollen development, decreased viability, and low seed-setting. It can be concluded that TaAGL66 plays an important role in wheat pollen development in the presence of Ae. kotschyi cytoplasm, providing new insights into the utilization of male sterility.


Subject(s)
Aegilops , Cytoplasm , Fertility , Gene Expression Regulation, Plant , Plant Infertility , Plant Proteins , Pollen , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Cytoplasm/metabolism , Cytoplasm/genetics , Pollen/genetics , Pollen/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Aegilops/genetics , Plant Infertility/genetics , Fertility/genetics , Flowers/genetics , Flowers/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Genes, Plant/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...