Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Proc Natl Acad Sci U S A ; 121(16): e2319119121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588435

ABSTRACT

The advancement of atomically precise dinuclear heterogeneous catalysts holds great potential in achieving efficient catalytic ozonation performance and contributes to the understanding of synergy mechanisms during reaction conditions. Herein, we demonstrate a "ship-in-a-bottle and pyrolysis" strategy that utilizes Fe2(CO)9 dinuclear-cluster to precisely construct Fe2 site, consisting of two Fe1-N3 units connected by Fe-Fe bonds and firmly bonded to N-doped carbon. Systematic characterizations and theoretical modeling reveal that the Fe-Fe coordination motif markedly reduced the devotion of the antibonding state in the Fe-O bond because of the strong orbital coupling interaction of dual Fe d-d orbitals. This facilitates O-O covalent bond cleavage of O3 and enhances binding strength with reaction intermediates (atomic oxygen species; *O and *OO), thus boosting catalytic ozonation performance. As a result, Fe dinuclear site catalyst exhibits 100% ozonation efficiency for CH3SH elimination, outperforming commercial MnO2 catalysts by 1,200-fold. This research provides insights into the atomic-level structure-activity relationship of ozonation catalysts and extends the use of dinuclear catalysts in catalytic ozonation and beyond.

3.
Front Plant Sci ; 15: 1333236, 2024.
Article in English | MEDLINE | ID: mdl-38681219

ABSTRACT

Tobacco is a valuable crop, but its disease identification is rarely involved in existing works. In this work, we use few-shot learning (FSL) to identify abnormalities in tobacco. FSL is a solution for the data deficiency that has been an obstacle to using deep learning. However, weak feature representation caused by limited data is still a challenging issue in FSL. The weak feature representation leads to weak generalization and troubles in cross-domain. In this work, we propose a feature representation enhancement network (FREN) that enhances the feature representation through instance embedding and task adaptation. For instance embedding, global max pooling, and global average pooling are used together for adding more features, and Gaussian-like calibration is used for normalizing the feature distribution. For task adaptation, self-attention is adopted for task contextualization. Given the absence of publicly available data on tobacco, we created a tobacco leaf abnormality dataset (TLA), which includes 16 categories, two settings, and 1,430 images in total. In experiments, we use PlantVillage, which is the benchmark dataset for plant disease identification, to validate the superiority of FREN first. Subsequently, we use the proposed method and TLA to analyze and discuss the abnormality identification of tobacco. For the multi-symptom diseases that always have low accuracy, we propose a solution by dividing the samples into subcategories created by symptom. For the 10 categories of tomato in PlantVillage, the accuracy achieves 66.04% in 5-way, 1-shot tasks. For the two settings of the tobacco leaf abnormality dataset, the accuracies were achieved at 45.5% and 56.5%. By using the multisymptom solution, the best accuracy can be lifted to 60.7% in 16-way, 1-shot tasks and achieved at 81.8% in 16-way, 10-shot tasks. The results show that our method improves the performance greatly by enhancing feature representation, especially for tasks that contain categories with high similarity. The desensitization of data when crossing domains also validates that the FREN has a strong generalization ability.

4.
Neuron ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38518778

ABSTRACT

Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.

5.
Small ; : e2311879, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461527

ABSTRACT

Carbon-defect engineering in single-atom metal-nitrogen-carbon (M─N─C) catalysts by straightforward and robust strategy, enhancing their catalytic activity for volatile organic compounds, and uncovering the carbon vacancy-catalytic activity relationship are meaningful but challenging. In this study, an iron-nitrogen-carbon (Fe─N─C) catalyst is intentionally designed through a carbon-thermal-diffusion strategy, exposing extensively the carbon-defective Fe─N4 sites within a micro-mesoporous carbon matrix. The optimization of Fe─N4 sites results in exceptional catalytic ozonation efficiency, surpassing that of intact Fe─N4 sites and commercial MnO2 by 10 and 312 times, respectively. Theoretical calculations and experimental data demonstrated that carbon-defect engineering induces selective cleavage of C─N bond neighboring the Fe─N4 motif. This induces an increase in non-uniform charges and Fermi density, leading to elevated energy levels at the center of Fe d-band. Compared to the intact atomic configuration, carbon-defective Fe─N4 site is more activated to strengthen the interaction with O3 and weaken the O─O bond, thereby reducing the barriers for highly active surface atomic oxygen (*O/*OO), ultimately achieving efficient oxidation of CH3 SH and its intermediates. This research not only offers a viable approach to enhance the catalytic ozonation activity of M─N─C but also advances the fundamental comprehension of how periphery carbon environment influences the characteristics and efficacy of M─N4 sites.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167083, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367900

ABSTRACT

OBJECTIVE: Spermidine (SPD) is an anti-aging natural substance, and it exerts effects through anti-apoptosis and anti-inflammation. However, the specific protective mechanism of SPD in osteoarthritis (OA) remains unclear. Here, we explored the role of SPD on the articular cartilage and the synovial tissue, and tested whether the drug would regulate the polarization of synovial macrophages by in vivo and in vitro experiments. METHODS: By constructing an OA model in mice, we preliminarily explored the protective effect of SPD on the articular cartilage and the synovial tissue. Meanwhile, we isolated and cultured human primary chondrocytes and bone marrow-derived macrophages (BMDMs), and prepared a conditioned medium (CM) to explore the specific protective effect of SPD in vitro. RESULTS: We found that SPD alleviated cartilage degeneration and synovitis, increased M2 polarization and decreased M1 polarization in synovial macrophages. In vitro experiments, SPD inhibited ERK MAPK and p65/NF-κB signaling in macrophages, and transformed macrophages from M1 to M2 subtypes. Interestingly, SPD had no direct protective effect on chondrocytes in vitro; however, the conditioned medium (CM) from M1 macrophages treated with SPD promoted the anabolism and inhibited the catabolism of chondrocytes. Moreover, this CM markedly suppressed IL-1ß-induced p38/JNK MAPK signaling pathway activation in chondrocytes. CONCLUSIONS: This work provides new perspectives on the role of SPD in OA. SPD does not directly target chondrocytes, but can ameliorate the degradation of articular cartilage through regulating M1/M2 polarization of synovial macrophages. Hence, SPD is expected to be the potential therapy for OA.


Subject(s)
Osteoarthritis , Spermidine , Humans , Mice , Animals , Spermidine/pharmacology , Spermidine/metabolism , Spermidine/therapeutic use , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Chondrocytes/metabolism , Macrophages/metabolism
7.
Sensors (Basel) ; 24(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38400414

ABSTRACT

The global population is progressively entering an aging phase, with population aging likely to emerge as one of the most-significant social trends of the 21st Century, impacting nearly all societal domains. Addressing the challenge of assisting vulnerable groups such as the elderly and disabled in carrying or transporting objects has become a critical issue in this field. We developed a mobile Internet of Things (IoT) device leveraging Ultra-Wideband (UWB) technology in this context. This research directly benefits vulnerable groups, including the elderly, disabled individuals, pregnant women, and children. Additionally, it provides valuable references for decision-makers, engineers, and researchers to address real-world challenges. The focus of this research is on implementing UWB technology for precise mobile IoT device localization and following, while integrating an autonomous following system, a robotic arm system, an ultrasonic obstacle-avoidance system, and an automatic leveling control system into a comprehensive experimental platform. To counteract the potential UWB signal fluctuations and high noise interference in complex environments, we propose a hybrid filtering-weighted fusion back propagation (HFWF-BP) neural network localization algorithm. This algorithm combines the characteristics of Gaussian, median, and mean filtering, utilizing a weighted fusion back propagation (WF-BP) neural network, and, ultimately, employs the Chan algorithm to achieve optimal estimation values. Through deployment and experimentation on the device, the proposed algorithm's data preprocessing effectively eliminates errors under multi-factor interference, significantly enhancing the precision and anti-interference capabilities of the localization and following processes.

8.
Sci Transl Med ; 16(731): eadf4590, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38266107

ABSTRACT

The infrapatellar fat pad (IPFP) and synovium play essential roles in maintaining knee joint homeostasis and in the progression of osteoarthritis (OA). The cellular and transcriptional mechanisms regulating the function of these specialized tissues under healthy and diseased conditions are largely unknown. Here, single-cell and single-nuclei RNA sequencing of human IPFP and synovial tissues were performed to elucidate the cellular composition and transcriptional profile. Computational trajectory analysis revealed that dipeptidyl peptidase 4+ mesenchymal cells function as a common progenitor for IPFP adipocytes and synovial lining layer fibroblasts, suggesting that IPFP and synovium represent an integrated tissue unit. OA induced a profibrotic and inflammatory phenotype in mesenchymal lineage cells with biglycan+ intermediate fibroblasts as a major contributor to OA fibrosis. Apolipoprotein E (APOE) signaling from intermediate fibroblasts and macrophages was identified as a critical regulatory factor. Ex vivo incubation of human cartilage with soluble APOE accelerated proteoglycan degeneration. Inhibition of APOE signaling by intra-articular injection of an anti-APOE neutralizing antibody attenuated the progression of collagenase-induced OA in mice, demonstrating a detrimental effect of APOE on cartilage. Our studies provide a framework for designing further therapeutic strategies for OA by describing the cellular and transcriptional landscape of human IPFP and synovium in healthy versus OA joints.


Subject(s)
Apolipoproteins E , Signal Transduction , Humans , Animals , Mice , Synovial Membrane , Antibodies, Neutralizing , Adipose Tissue
9.
Front Pharmacol ; 15: 1299253, 2024.
Article in English | MEDLINE | ID: mdl-38288443

ABSTRACT

Objective: Photodynamic therapy (PDT) is a minimally invasive treatment approach for precancerous and cancerous lesions, known for its ability to activate the host immune response. This study conducted a bibliometric analysis to identify the research trends and hotspots related to the immune response in PDT. Methods: We analyzed articles and reviews published from 1989 to 2023, retrieved from the Web of Science database. Using Citespace and VOSviewer, we visualized the distribution patterns of these studies in time and space. Results: The analysis revealed a substantial increase in the number of publications on PDT-related immune response since 1989. A total of 1,688 articles from 1,701 institutions were included in this analysis. Among thei nstitutions, the Chinese Academy of Sciences demonstrated exceptional productivity and a willingness to collaborate with others. Additionally, 8,567 authors contributed to the field, with Mladen Korbelik, Michael R. Hamblin, and Wei R. Chen being the most prolific contributors. The current research focus revolves around novel strategies to enhance antitumor immunity in PDT, including PDT-based dendritic cell vaccines, combination therapies with immune checkpoint inhibitors (ICIs), and the use of nanoparticles for photosensitizer delivery. Furthermore, genes such as CD8A, TNF, CD4, IFNG, CD274, IL6, IL10, CALR, HMGB1, and CTLA4 have been evaluated in the context of PDT-related immunity. Conclusion: PDT not only achieves tumor ablation but also stimulates the immune response, bolstering antitumor immunity. This study highlights the emerging hotspots in PDT-related immune response research and provides valuable insights for future investigations aimed at further enhancing antitumor immunity.

10.
Adv Sci (Weinh) ; 11(3): e2303614, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036301

ABSTRACT

Infrapatellar fat pad (IPFP) is closely associated with the development and progression of knee osteoarthritis (OA), but the underlying mechanism remains unclear. Here, it is find that IPFP from OA patients can secret small extracellular vesicles (sEVs) and deliver them into articular chondrocytes. Inhibition the release of endogenous osteoarthritic IPFP-sEVs by GW4869 significantly alleviated IPFP-sEVs-induced cartilage destruction. Functional assays in vitro demonstrated that IPFP-sEVs significantly promoted chondrocyte extracellular matrix (ECM) catabolism and induced cellular senescence. It is further demonstrated that IPFP-sEVs induced ECM degradation in human and mice cartilage explants and aggravated the progression of experimental OA in mice. Mechanistically, highly enriched let-7b-5p and let-7c-5p in IPFP-sEVs are essential to mediate detrimental effects by directly decreasing senescence negative regulator, lamin B receptor (LBR). Notably, intra-articular injection of antagomirs inhibiting let-7b-5p and let-7c-5p in mice increased LBR expression, suppressed chondrocyte senescence and ameliorated the progression of experimental OA model. This study uncovers the function and mechanism of the IPFP-sEVs in the progression of OA. Targeting IPFP-sEVs cargoes of let-7b-5p and let-7c-5p can provide a potential strategy for OA therapy.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Osteoarthritis, Knee , Humans , Mice , Animals , Cartilage, Articular/metabolism , Knee Joint/metabolism , Adipose Tissue/metabolism , Osteoarthritis, Knee/metabolism , Extracellular Vesicles/metabolism
11.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(6): 966-974, 2023 Dec 18.
Article in Chinese | MEDLINE | ID: mdl-38101776

ABSTRACT

OBJECTIVE: To analyze and compare the clinical and laboratory characteristics of macrophage activation syndrome (MAS) in patients with systemic lupus erythematosus (SLE) and adult-onset Still's disease (AOSD), and to evaluate the applicability of the 2016 European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organization classification criteria for MAS complicating systemic juvenile idiopathic arthritis (sJIA) in different auto-immune diseases contexts and to propose new diagnostic predictive indicators. METHODS: A retrospective analysis was conducted on the clinical and laboratory data of 24 SLE patients with MAS (SLE-MAS) and 24 AOSD patients with MAS (AOSD-MAS) who were hospitalized at Peking University People's Hospital between 2000 and 2018. Age- and sex-matched SLE (50 patients) and AOSD (50 patients) diagnosed in the same period without MAS episodes were selected as controls. The cutoff values for laboratory indicators predicting SLE-MAS and AOSD-MAS were determined using receiver operating characteristic (ROC) curves. Furthermore, the laboratory diagnostic predictive values for AOSD-MAS were used to improve the classification criteria for systemic juvenile idiopathic arthritis-associated MAS (sJIA-MAS), and the applicability of the revised criteria for AOSD-MAS was explored. RESULTS: Approximately 60% of SLE-MAS and 40% of AOSD-MAS occurred within three months after the diagnosis of the underlying diseases. The most frequent clinical feature was fever. In addition to the indicators mentioned in the diagnosis criteria for hemophagocytic syndrome revised by the International Society for Stem Cell Research, the MAS patients also exhibited significantly elevated levels of aspartate aminotransferase and lactate dehydrogenase, along with a significant decrease in albumin. Hemophagocytosis was observed in only about half of the MAS patients. ROC curve analysis demonstrated that the optimal discriminative values for diagnosing MAS was achieved when SLE patients had ferritin level≥1 010 µg/L and lactate dehydroge-nase levels≥359 U/L, while AOSD patients had fibrinogen levels≤225.5 mg/dL and triglyceride levels≥2.0 mmol/L. Applying the 2016 sJIA-MAS classification criteria to AOSD-MAS yielded a diagnostic sensitivity of 100% and specificity of 62%. By replacing the less specific markers ferritin and fibrinogen in the 2016 sJIA-MAS classification criteria with new cutoff values, the revised criteria for classifying AOSD-MAS had a notable increased specificity of 86%. CONCLUSION: Secondary MAS commonly occurs in the early stages following the diagnosis of SLE and AOSD. There are notable variations in laboratory indicators among different underlying diseases, which may lead to misdiagnosis or missed diagnosis when using uniform classification criteria for MAS. The 2016 sJIA-MAS classification criteria exhibit high sensitivity but low specificity in diagnosing AOSD-MAS. Modification of the criteria can enhance its specificity.


Subject(s)
Arthritis, Juvenile , Lupus Erythematosus, Systemic , Macrophage Activation Syndrome , Still's Disease, Adult-Onset , Adult , Humans , Child , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/complications , Arthritis, Juvenile/complications , Arthritis, Juvenile/diagnosis , Still's Disease, Adult-Onset/complications , Still's Disease, Adult-Onset/diagnosis , Retrospective Studies , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Fibrinogen , Ferritins
12.
Cell Mol Life Sci ; 80(11): 325, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37831180

ABSTRACT

Increasing evidence indicates that circular RNAs (circRNAs) accumulate in aging tissues and nonproliferating cells due to their high stability. However, whether upregulation of circRNA expression mediates stem cell senescence and whether circRNAs can be targeted to alleviate aging-related disorders remain unclear. Here, RNA sequencing analysis of differentially expressed circRNAs in long-term-cultured mesenchymal stem cells (MSCs) revealed that circSERPINE2 expression was significantly increased in late passages. CircSERPINE2 small interfering RNA delayed MSC senescence and rejuvenated MSCs, while circSERPINE2 overexpression had the opposite effect. RNA pulldown followed by mass spectrometry revealed an interaction between circSERPINE2 and YBX3. CircSERPINE2 increased the affinity of YBX3 for ZO-1 through the CCAUC motif, resulting in the sequestration of YBX3 in the cytoplasm, inhibiting the association of YBX3 with the PCNA promoter and eventually affecting p21 ubiquitin-mediated degradation. In addition, our results demonstrated that senescence-related downregulation of EIF4A3 gave rise to circSERPINE2. In vivo, intra-articular injection of si-circSerpine2 restrained native joint-resident MSC senescence and cartilage degeneration in mice with aging-related osteoarthritis. Taken together, our findings provide strong evidence for a regulatory role for the circSERPINE2/YBX3/PCNA/p21 axis in MSC senescence and the therapeutic potential of si-circSERPINE2 in alleviating aging-associated syndromes, such as osteoarthritis.


Subject(s)
Mesenchymal Stem Cells , Osteoarthritis , Mice , Animals , Proliferating Cell Nuclear Antigen , RNA, Circular/genetics , RNA, Circular/metabolism , Mesenchymal Stem Cells/metabolism , Cellular Senescence/genetics , RNA, Small Interfering/metabolism , Osteoarthritis/metabolism
13.
Bioresour Technol ; 385: 129467, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37429549

ABSTRACT

Thermophilic composting (TC) can effectively shorten maturity period with satisfactory sanitation. However, the higher energy consumption and lower composts quality limited its widespread application. In this study, hyperthermophilic pretreatment (HP) was introduced as a novel approach within TC, and its effects on humification process and bacterial community during food waste TC was investigated from multiple perspectives. Results showed that a 4-hour pretreatment at 90 °C increased the germination index and humic acid/fulvic acid by 25.52% and 83.08%, respectively. Microbial analysis demonstrated that HP stimulated the potential functional thermophilic microbes, and significantly up-regulated the genes related to amino acid biosynthesis. Further network and correlation analysis suggested that pH was the key factor affecting bacterial communities, and higher HP temperatures help to restore bacterial cooperation and showed higher humification degree. In summary, this study contributed to a better understanding of the mechanism towards the accelerated humification by HP.


Subject(s)
Composting , Refuse Disposal , Soil , Food , Bacteria/genetics , Archaea , Humic Substances/analysis , Manure/microbiology
14.
Stem Cells Int ; 2023: 9974098, 2023.
Article in English | MEDLINE | ID: mdl-37519314

ABSTRACT

Peri-implant tissue inflammation is an inflammatory injury that occurs in the soft and hard tissues surrounding the implant and is the main cause of short- or long-term failure of implant prosthetic restorations, which is compounded by bone loss and bone destruction in the alveolar bone of diabetes patients with peri-implantitis. However, the mechanisms underlying the persistence of diabetic peri-implantitis, as well as the essential connections and key molecules that regulate its start and progression, remain unknown. In this study, we discovered that M1 macrophage polarization was abnormally enhanced in diabetic peri-implantitis and influenced the osteogenic differentiation of mesenchymal stem cells. RNA sequencing revealed that ALKBH5 expression was abnormally reduced in diabetic peri-implantitis. Further mechanism study showed that ALKBH5 and its mediated m6A can influence osteogenic differentiation, which in turn influences the persistence of diabetic peri-implantitis. Our findings present a new mechanism for the suppression of osteoblast development in diabetic peri-implantitis and a new treatment strategy to promote anabolism by inhibiting ALKBH5.

15.
Bioresour Technol ; 380: 129095, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100303

ABSTRACT

The effects of the co-addition of fungal agents and biochar on physicochemical properties, odor emissions, microbial community structure, and metabolic functions were investigated during the in-situ treatment of food waste. The combined addition of fungal agents and biochar decreased cumulative NH3, H2S, and VOCs emissions by 69.37%, 67.50%, and 52.02%, respectively. The predominant phyla throughout the process were Firmicutes, Actinobacteria, Cyanobacteria, and Proteobacteria. Combined treatment significantly impacted the conversion and release of nitrogen from the perspective of the variation of nitrogen content between different forms. FAPROTAX analysis revealed that the combined application of fungal agents and biochar could effectively inhibit nitrite ammonification and reduce the emission of odorous gases. This work aims to clarify the combined effect of fungal agents and biochar on odor emission and provide a theoretical basis for developing an environmentally friendly in-situ efficient biological deodorization (IEBD) technology.


Subject(s)
Microbiota , Refuse Disposal , Soil/chemistry , Odorants , Food , Nitrogen/analysis , Charcoal/pharmacology
16.
Curr Med Imaging ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36895124

ABSTRACT

OBJECTIVE: The objective of this study is to investigate whether quantitatively measured infrapatellar fat pad (IPFP) signal intensity alteration is associated with joint effusion-synovitis in people with knee osteoarthritis (OA) over two years. METHODS: Among 255 knee OA patients, IPFP signal intensity alteration represented by four measurement parameters [standard deviation of IPFP signal intensity (IPFP sDev), upper quartile value of IPFP high signal intensity region (IPFP UQ (H)), ratio of IPFP high signal intensity region volume to whole IPFP volume (IPFP percentage (H)), and clustering factor of IPFP high signal intensity (IPFP clustering factor (H))] was measured quantitatively at baseline and two-year follow-up using magnetic resonance imaging (MRI). Effusion-synovitis of the suprapatellar pouch and other cavities were measured both quantitatively and semi-quantitatively as effusion-synovitis volume and effusion-synovitis score at baseline and two-year follow-up using MRI. Mixed effects models assessed the associations between IPFP signal intensity alteration and effusion-synovitis over two years. RESULTS: In multivariable analyses, all four parameters of IPFP signal intensity alteration were positively associated with total effusion-synovitis volume and effusion-synovitis volumes of the suprapatellar pouch and of other cavities over two years (all P<0.05). They were also associated with the semi-quantitative measure of effusion-synovitis except for IPFP percentage (H) with effusion-synovitis in other cavities. CONCLUSION: Quantitatively measured IPFP signal intensity alteration is positively associated with joint effusion-synovitis in people with knee OA, suggesting that IPFP signal intensity alteration may contribute to effusion-synovitis and a coexistent pattern of these two imaging biomarkers could exist in knee OA patients.

17.
Neurochem Int ; 165: 105510, 2023 05.
Article in English | MEDLINE | ID: mdl-36893915

ABSTRACT

Clinical and experimental studies have shown that the sharp reduction of estrogen is one of the important reasons for the high incidence of Alzheimer's disease (AD) in elderly women, but there is currently no such drug for treatment of AD. Our group first designed and synthesized a novel compound R-9-(4fluorophenyl)-3-methyl-10,10,-Hydrogen-6-hydrogen-benzopyran named FMDB. In this study, our aim is to investigate the neuroprotective effects and mechanism of FMDB in APP/PS1 transgenic mice. 6 months old APP/PS1 transgenic mice were intragastrical administered with FMDB (1.25, 2.5 and 5 mg/kg) every other day for 8 weeks. LV-ERß-shRNA was injected bilaterally into the hippocampus of APP/PS1 mice to knockdown estrogen receptor ß (ERß). We found that FMDB ameliorated cognitive impairment in the Morris water maze and novel object recognition tests, increased hippocampal neurogenesis and prevented hippocampal apoptotic responses in APP/PS1 mice. Importantly, FMDB activated nuclear ERß mediated CBP/p300, CREB and brain-derived neurotrophic factor (BDNF) signaling, and membrane ERß mediated PI3K/Akt, CREB and BDNF signaling in the hippocampus. Our study demonstrated the contributions and mechanism of FMDB to cognition, neurogenesis and apoptosis in APP/PS1 mice. These lay the experimental foundation for the development of new anti-AD drugs.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Mice , Animals , Female , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Mice, Transgenic , Brain-Derived Neurotrophic Factor/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphatidylinositol 3-Kinases , Estrogen Receptor beta , Cognition , Hippocampus/metabolism , Disease Models, Animal , Neurogenesis , Apoptosis , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics
18.
Bone Rep ; 18: 101667, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36909666

ABSTRACT

Osteoarthritis (OA) is the most prevalent musculoskeletal disease characterized by multiple joint structure damages, including articular cartilage, subchondral bone and synovium, resulting in disability and economic burden. Bone marrow lesions (BMLs) are common and important magnetic resonance imaging (MRI) features in OA patients. Basic and clinical research on subchondral BMLs in the pathogenesis of OA has been a hotspot. New evidence shows that subchondral bone degeneration, including BML and angiogenesis, occurs not only at or after cartilage degeneration, but even earlier than cartilage degeneration. Although BMLs are recognized as important biomarkers for OA, their exact roles in the pathogenesis of OA are still unclear, and disputes about the clinical impact and treatment of BMLs remain. This review summarizes the current basic and clinical research progress of BMLs. We particularly focus on molecular pathways, cellular abnormalities and microenvironmental changes of subchondral bone that contributed to the formation of BMLs, and emphasize the crosstalk between subchondral bone and cartilage in OA development. Finally, potential therapeutic strategies targeting BMLs in OA are discussed, which provides novel strategies for OA treatment.

19.
Ther Clin Risk Manag ; 19: 163-170, 2023.
Article in English | MEDLINE | ID: mdl-36798751

ABSTRACT

Objective: To identify risk factors for postoperative sore throat (POST) after general anesthesia in oral and maxillOfacial surgery. Material and Methods: This study is a retrospective cohort design study. We enrolled patients with oral and maxillofacial surgery who underwent endotracheal intubation under general anesthesia in the Stomatology Hospital, Zhejiang University School Of Medicine between April 2020 and April 2021. They were divided into the POST group and the without POST group. The distribution Of various characteristics in the two groups was firstly analyzed. Then, logistic regression analysis was performed to explore the independent predictors for POST occurrence. Following this, logistic regression and random forest models were constructed and their performance was evaluated to predict POST occurrence. Results: A total of 891 participants were enrolled in the study. Female gender and cough during extubation were significantly associated with increased POST occurrence in multivariate analysis (all P <0.05). Stratified logistic regression analysis results showed that the female gender was an independent predictor for POST occurrence in the 4≤age≤14 and 1460 group after adjusting American Society of Anesthesiologists status and throat and lung disease (all P <0.05). The logistic regression model had a similar effect to the random forest model in predicting POST occurrence. Interestingly, the female gender had a higher important weight compared to the cough during extubation. Conclusion: This research reveals female gender and cough during extubation as potential risk factors for POST occurrence, which may provide guidance for the effective prevention of POST in oral and maxillofacial surgery.

20.
Rheumatology (Oxford) ; 62(4): 1652-1661, 2023 04 03.
Article in English | MEDLINE | ID: mdl-35984286

ABSTRACT

OBJECTIVE: To investigate the therapeutic effect and mechanism of metformin on knee OA in normal diet (ND) mice or high-fat diet (HFD)-induced obese mice. METHODS: Destabilization of the medial meniscus surgery was performed in ND mice or HFD mice, and metformin was administrated in drinking water or not. The changes of OA joint structure, infiltration and polarization of synovial macrophages and circulating and local levels of leptin and adiponectin were evaluated. In vitro, the effects of metformin on chondrocytes and macrophages, and of conditioned mediums derived from mouse abdominal fat on murine chondrogenic cell line ATDC5 and murine macrophage cell line RAW264.7, were detected. RESULTS: Metformin showed protective effects on OA, characterized by reductions on OARSI score [2.00, 95% CI (1.15, 2.86) for ND mice and 3.17, 95% CI (2.37, 3.96) for HFD mice] and synovitis score [1.17, 95% CI (0.27, 2.06) for ND mice and 2.50, 95% CI (1.49, 3.51) for HFD mice] after 10 weeks of treatment, and the effects were more significant in HFD mice than in ND mice. Mechanistically, in addition to decreasing apoptosis and matrix-degrading enzymes expression in chondrocytes as well as infiltration and pro-inflammatory differentiation of synovial macrophages, metformin reduced leptin secretion by adipose tissue in HFD mice. CONCLUSIONS: Metformin protects against knee OA which could be through reducing apoptosis and catabolism of chondrocytes, and suppressing infiltration and pro-inflammatory polarization of synovial macrophages. For obese mice, metformin has a greater protective effect in knee OA additionally through reducing leptin secretion from adipose tissue.


Subject(s)
Metformin , Osteoarthritis , Mice , Animals , Leptin , Metformin/pharmacology , Metformin/therapeutic use , Chondrocytes/metabolism , Mice, Obese , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Adipocytes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Diet, High-Fat/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...