Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(14): 5082-5112, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577377

ABSTRACT

As a burgeoning category of heterogeneous catalysts, atomic catalysts have been extensively researched in the field of electrocatalysis. To satisfy different electrocatalytic reactions, single-atom catalysts (SACs), diatomic catalysts (DACs) and triatomic catalysts (TACs) have been successfully designed and synthesized, in which microenvironment structure regulation is the core to achieve high-efficiency catalytic activity and selectivity. In this review, the effect of the geometric and electronic structure of metal active centers on catalytic performance is systematically introduced, including substrates, central metal atoms, and the coordination environment. Then theoretical understanding of atomic catalysts for electrocatalysis is innovatively discussed, including synergistic effects, defect coupled spin state change and crystal field distortion spin state change. In addition, we propose the challenges to optimize atomic catalysts for electrocatalysis applications, including controlled synthesis, increasing the density of active sites, enhancing intrinsic activity, and improving the stability. Moreover, the structure-function relationships of atomic catalysts in the CO2 reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are highlighted. To facilitate the development of high-performance atomic catalysts, several technical challenges and research orientations are put forward.

2.
Chemistry ; 30(17): e202303779, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38095235

ABSTRACT

Oxygen evolution reaction (OER) is the key anode reaction of electrolytic water. To improve the slow OER kinetics, we synthesize nanoflower-like Co-Fe-Cr-Mo-Mn high-entropy spinel (HES) nanosheets on nickel foam (NF) by one-step solvothermal method, which exhibit an overpotential (η10) of only 188 mV at 10 mA cm-2, much lower than bimetallic CoFeOx/NF (233 mV), trimetallic CoFeCrOx/NF (211 mV), and tetrametallic CoFeCrMoOx/NF (200 mV). The OER overpotential decreases with the increase of the number of metals, indicating that the formation of HES has a positive effect on the improvement of electrocatalytic performance, since the synergistic effect between different metals enhances the charge transfer rate and decreases reaction barrier. In-situ Raman spectra demonstrate that the formation of γ-NiOOH on the HES surface is a crucial active species for the OER. This work demonstrates a simple and efficient synthesis method to prepare nanoflower-like high-entropy electrocatalysts for efficient OER electrocatalysis.

3.
Exploration (Beijing) ; 3(5): 20230011, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37933285

ABSTRACT

Copper is the only metal that can convert CO2 into C2 and C2+ in electrocatalytic carbon dioxide reduction (CO2RR). However, the Faraday efficiency of CO2 conversion to C2 and C2+ products at high current densities is still low, which cannot meet the actual industrial demand. Here, the design methods of single-atom copper catalysts (including regulating the coordination environment of single-atom copper, modifying the carbon base surface and constructing diatomic Cu catalysts) are reviewed, and the current limitations and future research directions of copper-based single-atom catalysts are proposed, providing directions for the industrial conversion of CO2 into C2 and C2+ products.

4.
Chem Commun (Camb) ; 59(91): 13607-13610, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37901916

ABSTRACT

The development of high activity and strong resistance to seawater corrosion oxygen evolution reaction (OER) electrocatalysts for seawater electrolysis has broad application prospects. Herein, we prepare Co-doped FeNiOOH rosette-like nanoflowers on nickel foam (NF) with different Co dosages by one-step solvothermal method. The Co0.2-FeNiOOH/NF exhibits a low overpotential (η10) of 185 mV and Tafel slope of 30 mV dec-1 in 1 M KOH. Moreover, it shows a low η10 of 244 mV in alkaline seawater electrolyte. The remarkable OER performance of Co0.2-FeNiOOH/NF is ascribed to the fact that the introduction of Co regulates the morphology and electron structure of the material, which provides abundant active sites for the reaction and promotes charge transfer. In situ Raman results demonstrate that NiOOH and γ-FeOOH are the key active species for the OER. This study provides a feasible basis for seawater electrolysis over transition metal (oxy)hydroxides.

5.
Chem Commun (Camb) ; 59(80): 11971-11974, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37724435

ABSTRACT

High-entropy materials (HEMs) have potential application value in electrocatalytic water splitting because of their unique alloy design concept and significant mixed entropy effect. Here, we synthesize a high-entropy Ni-Fe-Cr-Mn-Co (oxy)hydroxide on nickel foam (NF) by a solvothermal method. The flower-like structure of FeNiCrMnCoOOH/NF can provide abundant active sites, thus improving the oxygen evolution reaction (OER) activity. In 1 M KOH, the FeNiCrMnCoOOH/NF shows an ultra-low overpotential (η10) of 201 mV for the OER, superior to FeNiCrMnAlOOH/NF, FeNiCrMnCuOOH/NF, FeNiCrMnMoOOH/NF, and FeNiCrMnCeOOH/NF. In addition, it exhibits a low η10 of 223 mV in 0.5 M NaCl + 1 M KOH and excellent stability. Electrochemical impedance spectroscopy measurements indicate that the synergistic effect between multiple metals accelerates charge transfer, while in situ Raman measurements reveal that NiOOH is a key active species for the OER. This work is of great significance for the construction of high-entropy (oxy)hydroxides for seawater electrolysis.

6.
Chem Commun (Camb) ; 57(89): 11843-11846, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34698742

ABSTRACT

To solve the energy crisis and environmental pollution problems, the use of clean and renewable energy to replace fossil energy has become a top priority. The oxygen evolution reaction (OER) is the core of many renewable energy technologies. Developing low-cost and high-performance OER electrocatalysts is the key to implementing efficient energy conversion processes. Here, we synthesize ordered mesoporous iron-cobalt oxides using a hard template strategy. As a mesoporous oxide catalyst, meso-CoFe0.05Ox exhibits low OER overpotentials of 280 and 373 mV at current densities of 10 and 100 mA cm-2, respectively, and does not show deactivation for at least 18 hours at 100 mA cm-2. The introduction of iron can change the electronic structure of Co, and the orbital electrons are easily transferred from cobalt to iron. The enhanced OER performance can be attributed to concerted catalysis between the iron and cobalt sites that lowers the OER energy barrier, and the large specific surface area of the porous oxide providing efficient active sites for the reaction.

SELECTION OF CITATIONS
SEARCH DETAIL