Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 107(5): 2850-2863, 2024 May.
Article in English | MEDLINE | ID: mdl-37977444

ABSTRACT

The purpose of this study was to investigate the effects of early castration and eucalyptus oil (EUC) supplementation on dry matter intake (DMI), growth performance, and immune response of Holstein calves. Fifty-six male Holstein calves 52 d old and with an initial body weight (BW) of 63.5 ± 5.27 kg were used. The animals were blocked by BW and randomly assigned into 1 of the 4 treatment groups in a randomized complete block design with a 2 (no castration vs. castration) × 2 (without vs. with EUC) factorial arrangement of treatments. The treatments were (1) uncastrated calves fed without EUC, (2) uncastrated calves fed 0.5 g/d EUC (EUC group), (3) castrated calves (steers) fed without EUC (castrated group), and (4) steers fed with 0.5 g/d EUC (castrated + EUC). The experiment was 8 wk long, including pre- and postweaning (weaned at 72 d). The EUC × castrated interactions were not significant for DMI, growth performance, nutrient digestibility, and immune response. Castration did not affect the DMI, final BW, average daily gain (ADG), or feed efficiency, except that the ADG was greater for bull calves than for steers at postweaning. Supplementation with EUC increased DMI pre- and postweaning and increased the ADG of weaned calves. Digestibility in the total digestive tract was not affected by castration (except for organic matter digestibility), whereas adding EUC improved the digestibility of dry matter, acid detergent fiber, and crude protein. Blood concentration of IL-6 at d 94 was decreased by feeding EUC. These results indicate that the EUC could be fed to either intact or castrated dairy calves to promote growth and health postweaning; castration before weaning may reduce ADG and cause inflammatory stress without affecting feed intake or feed efficiency.

2.
IEEE Trans Cybern ; PP2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38145521

ABSTRACT

The quality of videos is the primary concern of video service providers. Built upon deep neural networks, video quality assessment (VQA) has rapidly progressed. Although existing works have introduced the knowledge of the human visual system (HVS) into VQA, there are still some limitations that hinder the full exploitation of HVS, including incomplete modeling with few HVS characteristics and insufficient connection among these characteristics. In this article, we present a novel spatial-temporal VQA method termed HVS-5M, wherein we design five modules to simulate five characteristics of HVS and create a bioinspired connection among these modules in a cooperative manner. Specifically, on the side of the spatial domain, the visual saliency module first extracts a saliency map. Then, the content-dependency and the edge masking modules extract the content and edge features, respectively, which are both weighted by the saliency map to highlight those regions that human beings may be interested in. On the other side of the temporal domain, the motion perception module extracts the dynamic temporal features. Besides, the temporal hysteresis module simulates the memory mechanism of human beings and comprehensively evaluates the video quality according to the fusion features from the spatial and temporal domains. Extensive experiments show that our HVS-5M outperforms the state-of-the-art VQA methods. Ablation studies are further conducted to verify the effectiveness of each module toward the proposed method. The source code is available at https://github.com/GZHU-DVL/HVS-5M.

3.
Molecules ; 28(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446712

ABSTRACT

The purpose of this study was to compare the antioxidant activity of litsea cubeba oil (LCO), cinnamon oil (CO), anise oil (AO), and eucalyptus oil (EUC) in vitro. The chemical compositions of the essential oils (EOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of the four EOs was evaluated through scavenging DPPH free radicals, chelating Fe2+, scavenging hydroxyl free radicals, and inhibiting yolk lipid peroxidation. The results showed that the major compounds found in LCO, CO, AO, and EUC are citral (64.29%), cinnamaldehyde (84.25%), anethole (78.51%), and 1,8-cineole (81.78%), respectively. The four EOs all had certain antioxidant activity. The ability to scavenge DPPH radical was ranked in the order of LCO > CO > AO > EUC. The hydroxyl radical scavenging ability was ranked in the order of EUC > CO > LCO > AO. The chelating Fe2+ capacity was ranked in the order of EUC > AO > CO > LCO. The yolk lipid peroxidation inhibition ability was ranked in the order of CO > AO > EUC > LCO. In different antioxidant activity assays, the antioxidant activity of the EOs was different. It was speculated that the total antioxidant activity of an EO may be the result of the joint action of different antioxidant capacities.


Subject(s)
Apiaceae , Eucalyptus , Litsea , Oils, Volatile , Pimpinella , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Eucalyptus/chemistry , Litsea/chemistry , Cinnamomum zeylanicum , Eucalyptus Oil , Free Radicals
4.
Nutrients ; 15(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375600

ABSTRACT

Citrus Medica limonum essential oil (LEO) has been reported to have antibacterial and anti-inflammatory activities, but its protective effect in the intestine remains unknown. In this study, we researched the protective effects of LEO in relation to intestinal inflammation induced by E. coli K99. The mice were pretreated with 300, 600, and 1200 mg/kg LEO and then stimulated with E. coli K99. The results showed that E. coli K99 caused immune organ responses, intestinal tissue injury, and inflammation. LEO pretreatment dose-dependently alleviated these changes by maintaining a low index in the thymus and spleen and producing a high content of immunoglobulin A, G, and M (IgA, IgG, and IgM) and low content of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). Intestinal integrity as a consequence of the LEO pretreatment may be related to the high mRNA expression of intestinal trefoil factor (ITF) and the low mRNA expression of transforming growth factor-ß1 (TGF-ß1). Conclusively, an LEO pretreatment can alleviate E. coli K99-induced diarrhea, immune organ response, and body inflammation in mice by reducing the levels of inflammatory cytokines and improving the levels of immunoglobulin, and the intestinal integrity remained highest when maintaining the high mRNA expression of ITF and keeping the mRNA expression of TGF-ß1 low in the intestinal tissue.


Subject(s)
Escherichia coli , Oils, Volatile , Animals , Mice , Escherichia coli/metabolism , Transforming Growth Factor beta1/metabolism , Oils, Volatile/pharmacology , Intestines , Inflammation , Immunoglobulin A , RNA, Messenger
5.
Molecules ; 27(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296637

ABSTRACT

Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds' combined action.


Subject(s)
Citrus , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Citrus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Limonene , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Terpenes/pharmacology , Free Radicals
SELECTION OF CITATIONS
SEARCH DETAIL
...