Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Gastroenterol Res Pract ; 2024: 8882667, 2024.
Article in English | MEDLINE | ID: mdl-38966598

ABSTRACT

Background and Aims: Acute liver injury (ALI) often follows biliary acute pancreatitis (BAP), but the exact cause and effective treatment are unknown. The aim of this study was to investigate the role of the gut microflora-bile acids-liver axis in BAP-ALI in mice and to assess the potential therapeutic effects of Yinchenhao decoction (YCHD), a traditional Chinese herbal medicine formula, on BAP-ALI. Methods: Male C57BL/6 mice were allocated into three groups: negative control (NC), BAP model, and YCHD treatment groups. The severity of BAP-ALI, intrahepatic bile acid levels, and the gut microbiota were assessed 24 h after BAP-ALI induction in mice. Results: Our findings demonstrated that treatment with YCHD significantly ameliorated the severity of BAP-ALI, as evidenced by the mitigation of hepatic histopathological changes and a reduction in liver serum enzyme levels. Moreover, YCHD alleviated intrahepatic cholestasis and modified the composition of bile acids, as indicated by a notable increase in conjugated bile acids. Additionally, 16S rDNA sequencing analysis of the gut microbiome revealed distinct alterations in the richness and composition of the microbiome in BAP-ALI mice compared to those in control mice. YCHD treatment effectively improved the intestinal flora disorders induced by BAP-ALI. Spearman's correlation analysis revealed a significant association between the distinct compositional characteristics of the intestinal microbiota and the intrahepatic bile acid concentration. Conclusions: These findings imply a potential link between gut microbiota dysbiosis and intrahepatic cholestasis in BAP-ALI mice and suggest that YCHD treatment may confer protection against BAP-ALI via the gut microflora-bile acids-liver axis.

3.
Front Microbiol ; 15: 1387401, 2024.
Article in English | MEDLINE | ID: mdl-38860223

ABSTRACT

Background: Intestinal microbiota have been demonstrated to be involved in the development of NAFLD, while the relationship between the severity of NAFLD and intestinal microbiota is still not fully elucidated. Sheng-Jiang Powder (SJP) showed exact efficacy in treating SFL and great potential in regulating intestinal microbiota, but the effects need to be further addressed in NASH and liver fibrosis. Objectives: To investigate the differences in intestinal microbiota of NAFLD with different severity and the effect of SJP on liver damage and intestinal microbiota. Design: NAFLD mice models with different severity were induced by high-fat diet (HFD) or choline-deficient, L-amino acid-defined high-fat diet (CDAHFD) feeding and then treated with SJP/normal saline. Methods: Biochemical blood tests, H&E/Masson/Oil Red O/IHC staining, Western blot, and 16SrDNA sequencing were performed to explore intestinal microbiota alteration in different NAFLD models and the effect of SJP on liver damage and intestinal microbiota. Results: Intestinal microbiota alteration was detected in all NAFLD mice. SJP induced increased expression of Pparγ and alleviated liver lipid deposition in all NAFLD mice. Microbiome analysis revealed obvious changes in intestinal microbiota composition, while SJP significantly elevated the relative abundance of Roseburia and Akkermansia, which were demonstrated to be beneficial for improving inflammation and intestinal barrier function. Conclusion: Our results demonstrated that SJP was effective in improving lipid metabolism in NAFLD mice, especially in mice with SFL. The potential mechanism may be associated with the regulation of intestinal microbiota.

4.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757565

ABSTRACT

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Subject(s)
Coumarins , Endoplasmic Reticulum , Mitochondria , Pancreatitis , Animals , Coumarins/pharmacology , Coumarins/chemistry , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Mice , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Pomegranate/chemistry , Acinar Cells/drug effects , Acinar Cells/metabolism , Acinar Cells/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry
5.
Front Immunol ; 15: 1353695, 2024.
Article in English | MEDLINE | ID: mdl-38765004

ABSTRACT

Objectives: This study aimed to analyze active compounds and signaling pathways of CH applying network pharmacology methods, and to additionally verify the molecular mechanism of CH in treating AP. Materials and methods: Network pharmacology and molecular docking were firstly used to identify the active components of CH and its potential targets in the treatment of AP. The pancreaticobiliary duct was retrogradely injected with sodium taurocholate (3.5%) to create an acute pancreatitis (AP) model in rats. Histological examination, enzyme-linked immunosorbent assay, Western blot and TUNEL staining were used to determine the pathway and mechanism of action of CH in AP. Results: Network pharmacological analysis identified 168 active compounds and 276 target proteins. In addition, there were 2060 targets associated with AP, and CH had 177 targets in common with AP. These shared targets, including STAT3, IL6, MYC, CDKN1A, AKT1, MAPK1, MAPK3, MAPK14, HSP90AA1, HIF1A, ESR1, TP53, FOS, and RELA, were recognized as core targets. Furthermore, we filtered out 5252 entries from the Gene Ontology(GO) and 186 signaling pathways from the Kyoto Encyclopedia of Genes and Genomes(KEGG). Enrichment and network analyses of protein-protein interactions predicted that CH significantly affected the PI3K/AKT signaling pathway, which played a critical role in programmed cell death. The core components and key targets showed strong binding activity based on molecular docking results. Subsequently, experimental validation demonstrated that CH inhibited the phosphorylation of PI3K and AKT in pancreatic tissues, promoted the apoptosis of pancreatic acinar cells, and further alleviated inflammation and histopathological damage to the pancreas in AP rats. Conclusion: Apoptosis of pancreatic acinar cells can be enhanced and the inflammatory response can be reduced through the modulation of the PI3K/AKT signaling pathway, resulting in the amelioration of pancreatic disease.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Pancreatitis , Signal Transduction , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Rats , Signal Transduction/drug effects , Male , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Protein Interaction Maps
6.
MedComm (2020) ; 4(6): e459, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38116065

ABSTRACT

Severe acute pancreatitis (SAP) often develops into acute cardiac injury (ACI), contributing to the high mortality of SAP. Urolithin A (UA; 3,8-dihydroxy-6H-dibenzopyran-6-one), a natural polyphenolic compound, has been extensively studied and shown to possess significant anti-inflammatory effects. Nevertheless, the specific effects of UA in SAP-associated acute cardiac injury (SACI) have not been definitively elucidated. Here, we investigated the therapeutic role and mechanisms of UA in SACI using transcriptomics and untargeted metabolomics analyses in a mouse model of SACI and in vitro studies. SACI resulted in severely damaged pancreatic and cardiac tissues with myocardial mitochondrial dysfunction and mitochondrial metabolism disorders. UA significantly reduced the levels of lipase, amylase and inflammatory factors, attenuated pathological damage to pancreatic and cardiac tissues, and reduced myocardial cell apoptosis and oxidative stress in SACI. Moreover, UA increased mitochondrial membrane potential and adenosine triphosphate production and restored mitochondrial metabolism, but the efficacy of UA was weakened by the inhibition of CPT1. Therefore, UA can attenuate cardiac mitochondrial dysfunction and reduce myocardial apoptosis by restoring the balance of mitochondrial fatty acid oxidation metabolism. CPT1 may be a potential target. This study has substantial implications for advancing our understanding of the pathogenesis and drug development of SACI.

7.
Therap Adv Gastroenterol ; 16: 17562848231202133, 2023.
Article in English | MEDLINE | ID: mdl-37829561

ABSTRACT

Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.

8.
ACS Nano ; 17(8): 7562-7575, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37022097

ABSTRACT

Integrins expressed on extracellular vesicles (EVs) secreted by various cancers are reported to mediate the organotropism of these EVs. Our previous experiment found that pancreatic tissue of mice with severe cases of acute pancreatitis (SAP) overexpresses several integrins and that serum EVs of these mice (SAP-EVs) can mediate acute lung injury (ALI). It is unclear if SAP-EV express integrins that can promote their accumulation in the lung to promote ALI. Here, we report that SAP-EV overexpress several integrins and that preincubation of SAP-EV with the integrin antagonist peptide HYD-1 markedly attenuates their pulmonary inflammation and disrupt the pulmonary microvascular endothelial cell (PMVEC) barrier. Further, we report that injecting SAP mice with EVs engineered to overexpress two of these integrins (ITGAM and ITGB2) can attenuate the pulmonary accumulation of pancreas-derived EVs and similarly decrease pulmonary inflammation and disruption of the endothelial cell barrier. Based on these findings, we propose that pancreatic EVs can mediate ALI in SAP patients and that this injury response could be attenuated by administering EVs that overexpress ITGAM and/or ITGB2, which is worthy of further study due to the lack of effective therapies for SAP-induced ALI.


Subject(s)
Acute Lung Injury , Pancreatitis , Mice , Animals , Acute Disease , Tumor Necrosis Factor-alpha , Lung , Integrins
9.
Biochem Pharmacol ; 212: 115527, 2023 06.
Article in English | MEDLINE | ID: mdl-37004779

ABSTRACT

Histidine triad nucleotide-binding protein 2 (HINT2) is a dimeric protein that belongs to the histidine triad protein superfamily, predominantly expressed in the liver, pancreas, and adrenal gland, and localised to the mitochondrion. HINT2 binds nucleotides and catalyses the hydrolysis of nucleotidyl substrates. Moreover, HINT2 has been identified as a key regulator of multiple biological processes, including mitochondria-dependent apoptosis, mitochondrial protein acetylation, and steroidogenesis. Genetic manipulation has provided new insights into the physiological roles of HINT2 in several processes, such as inhibition of cancer progression, regulation of hepatic lipid metabolism, and protective effects on the cardiovascular system. The current review outlines the background and functions of HINT2. In addition, it summarises research progress on the correlation between HINT2 and human malignancies, hepatic metabolic diseases, and cardiovascular diseases, with an attempt to provide new research directions emerging in this field and to unveil the therapeutic value of HINT2 as a target in the combat of human diseases.


Subject(s)
Histidine , Liver , Humans , Histidine/metabolism , Liver/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Nucleotides/metabolism
10.
Mil Med Res ; 9(1): 61, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36316787

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening lung diseases associated with acute and severe inflammation. Both have high mortality rates, and despite decades of research on clinical ALI/ARDS, there are no effective therapeutic strategies. Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury. Recently, studies on the role of extracellular vesicles (EVs) in regulating normal and pathophysiologic cell activities, including inflammation and injury responses, have attracted attention. Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes, which can be used to diagnose and predict the development of ALI/ARDS. EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function, and thereby promote cell proliferation and tissue regeneration. This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation, particularly ALI/ARDS.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Pneumonia , Respiratory Distress Syndrome , Humans , Acute Lung Injury/etiology , Acute Lung Injury/therapy , Extracellular Vesicles/pathology , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Inflammation
11.
Acta Pharm Sin B ; 12(10): 3986-4003, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213542

ABSTRACT

Severe acute pancreatitis-associated acute lung injury (SAP-ALI) is a serious disease associated with high mortality. Emodin has been applied to alleviate SAP-ALI; however, the mechanism remains unclear. We report that the therapeutic role of emodin in attenuating SAP-ALI is partly dependent on an exosomal mechanism. SAP rats had increased levels of plasma exosomes with altered protein contents compared to the sham rats. These infused plasma exosomes tended to accumulate in the lungs and promoted the hyper-activation of alveolar macrophages and inflammatory damage. Conversely, emodin treatment decreased the plasma/pancreatic exosome levels in the SAP rats. Emodin-primed exosomes showed less pro-inflammatory effects in alveolar macrophages and lung tissues than SAP exosomes. In detail, emodin-primed exosomes suppressed the NF-κB pathway to reduce the activation of alveolar macrophage and ameliorate lung inflammation by regulating PPARγ pathway, while these effects were amplified/abolished by PPARγ agonist/antagonist. Blockage of pancreatic acinar cell exosome biogenesis also exhibited suppression of alveolar macrophage activation and reduction of lung inflammation. This study suggests a vital role of exosomes in participating inflammation-associated organ-injury, and indicates emodin can attenuate SAP-ALI by reducing the pancreatic exosome-mediated alveolar macrophage activation.

12.
Front Pharmacol ; 13: 922130, 2022.
Article in English | MEDLINE | ID: mdl-35899121

ABSTRACT

Dao-Chi powder (DCP) has been widely used in the treatment of inflammatory diseases in the clinical practice of traditional Chinese medicine, but has not been used in acute pancreatitis (AP). This study aimed to evaluate the effect of DCP on severe AP (SAP) and SAP-associated intestinal and cardiac injuries. To this end, an SAP animal model was established by retrograde injection of 3.5% taurocholic acid sodium salt into the biliopancreatic ducts of rats. Intragastric DCP (9.6 g/kg.BW) was administered 12 h after modeling. The pancreas, duodenum, colon, heart and blood samples were collected 36 h after the operation for histological and biochemical detection. The tissue distributions of the DCP components were determined and compared between the sham and the SAP groups. Moreover, molecular docking analysis was employed to investigate the interactions between the potential active components of DCP and its targets (Nrf2, HO-1, and HMGB1). Consequently, DCP treatment decreased the serum levels of amylase and the markers of gastrointestinal and cardiac injury, further alleviating the pathological damage in the pancreas, duodenum, colon, and heart of rats with SAP. Mechanistically, DCP rebalanced the pro-/anti-inflammatory cytokines and inhibited MPO activity and MDA levels in these tissues. Furthermore, Western blot and RT-PCR results showed that DCP intervention enhanced the expression of Nrf2 and HO-1 in the duodenum and colon of rats with SAP, while inhibiting the expression of HMGB1 in the duodenum and heart. HPLC-MS/MS analysis revealed that SAP promoted the distribution of ajugol and oleanolic acid to the duodenum, whereas it inhibited the distribution of liquiritigenin to the heart and ajugol to the colon. Molecular docking analysis confirmed that the six screened components of DCP had relatively good binding affinity with Nrf2, HO-1, and HMGB1. Among these, oleanolic acid had the highest affinity for HO-1. Altogether, DCP could alleviated SAP-induced intestinal and cardiac injuries via inhibiting the inflammatory responses and oxidative stress partially through regulating the Nrf2/HO-1/HMGB1 signaling pathway, thereby providing additional supportive evidence for the clinical treatment of SAP.

13.
Front Pharmacol ; 13: 873053, 2022.
Article in English | MEDLINE | ID: mdl-35721108

ABSTRACT

Objective: To investigate the protective effect of emodin in acute pancreatitis (AP)-associated lung injury and the underlying mechanisms. Methods: NaT-AP model in rats was constructed using 3.5% sodium taurocholate, and CER+LPS-AP model in mice was constructed using caerulein combined with Lipopolysaccharide. Animals were divided randomly into four groups: sham, AP, Ac-YVAD-CMK (caspase-1 specific inhibitor, AYC), and emodin groups. AP-associated lung injury was assessed with H&E staining, inflammatory cytokine levels, and myeloperoxidase activity. Alveolar macrophages (AMs) pyroptosis was evaluated by flow cytometry. In bronchoalveolar lavage fluid, the levels of lactate dehydrogenase and inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Pyroptosis-related protein expressions were detected by Western Blot. Results: Emodin, similar to the positive control AYC, significantly alleviated pancreas and lung damage in rats and mice. Additionally, emodin mitigated the pyroptotic process of AMs by decreasing the level of inflammatory cytokines and lactate dehydrogenase. More importantly, the protein expressions of NLRP3, ASC, Caspase1 p10, GSDMD, and GSDMD-NT in AMs were significantly downregulated after emodin intervention. Conclusion: Emodin has a therapeutic effect on AP-associated lung injury, which may result from the inhibition of NLRP3/Caspase1/GSDMD-mediated AMs pyroptosis signaling pathways.

14.
Article in English | MEDLINE | ID: mdl-35586694

ABSTRACT

Objective: To explore the effect and underlying mechanism of Zengye decoction (ZYD), a traditional formula from China, on the severe acute pancreatitis (SAP) rat model with acute kidney injury (AKI). Methods: The SAP-AKI model was induced by 3.5% sodium taurocholate. Rats were treated with normal saline or ZYD twice and sacrificed at 36 h after modeling. Amylase, lipase, creatinine, blood urea nitrogen, kidney injury molecule 1(KIM-1), and multiple organs' pathological examinations were used to assess the protective effect of ZYD. Gut microbiome detected by 16S rRNA sequencing analysis and serum amino acid metabolome analyzed by liquid chromatography-mass spectrometry explained the underlying mechanism. The Spearman correlation analysis presented the relationship between microflora and metabolites. Results: ZYD significantly decreased KIM-1(P < 0.05) and the pathological score of the pancreas (P < 0.05), colon (P < 0.05), and kidney (P < 0.05). Meanwhile, ZYD shifted the overall gut microbial structure (ß-diversity, ANOSIM R = 0.14, P=0.025) and altered the microbial compositions. Notably, ZYD reduced the potentially pathogenic bacteria-Bacteroidetes, Clostridiales vadin BB60 group, and uncultured_Clostridiales_bacterium, but promoted the short-chain fatty acid (SCFA) producers-Erysipelotrichaceae, Bifidobacterium, Lactobacillus, and Moryella (all P < 0.05). Moreover, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA) presented a remarkable change in amino acid metabolome after SAP-AKI induction and an apparent regulation by ZYD treatment (R2Y 0.878, P=0.01; Q2 0.531, P=0.01). Spearman's correlation analysis suggested that gut bacteria likely influenced serum metabolites levels (absolute r > 0.4 and FDR P < 0.02). Conclusions: ZYD attenuated SAP-AKI by modulating the gut microbiome and serum amino acid metabolome, which may be a promising adjuvant treatment.

15.
Nat Commun ; 13(1): 2043, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440561

ABSTRACT

Rising emissions from wildfires over recent decades in the Pacific Northwest are known to counteract the reductions in human-produced aerosol pollution over North America. Since amplified Pacific Northwest wildfires are predicted under accelerating climate change, it is essential to understand both local and transported contributions to air pollution in North America. Here, we find corresponding increases for carbon monoxide emitted from the Pacific Northwest wildfires and observe significant impacts on both local and down-wind air pollution. Between 2002 and 2018, the Pacific Northwest atmospheric carbon monoxide abundance increased in August, while other months showed decreasing carbon monoxide, so modifying the seasonal pattern. These seasonal pattern changes extend over large regions of North America, to the Central USA and Northeast North America regions, indicating that transported wildfire pollution could potentially impact the health of millions of people.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Air Pollutants/analysis , Air Pollution/analysis , Carbon Monoxide , Humans , North America , Seasons
16.
Biomed Pharmacother ; 146: 112587, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35062061

ABSTRACT

Chronic alcohol consumption, which is observed worldwide, can damage pancreatic tissue and promote pancreatitis. Rhubarb is a widely used traditional Chinese herbal medicine for treating pancreatitis in China. However, few pharmacological studies have investigated its epigenetic regulation. In this study, we investigated whether chronic exposure to alcohol can alter inflammatory gene expression and the epigenetic regulation effect of cooked rhubarb in the pancreatic tissue of rats. First, changes in inflammatory cytokine DNA methylation (IL-10, IL-1α, TNF-α, NF-κB and TGF-ß) were detected in pancreatic tissue of Sprague-Dawley rats with varying alcohol exposure times (4, 6, 8, or 12 weeks), and then with varying doses of cooked rhubarb treatment (3, 6, or 12 g/day). DNA methylation levels, related RNA concentrations and protein expression of specific inflammatory cytokines, and histopathological score were analysed in pancreatic tissue of Sprague-Dawley rats. The results showed that chronic alcohol exposure (8 weeks) reduced the level of IL-1α DNA methylation and increased its protein expression in acinar cells (P < 0.05). In the acinar cells, the level of IL-10 DNA methylation increased, resulting in a reduction of protein expression (P < 0.05). Simultaneously, chronic alcohol exposure increased the pathological damage to the pancreas (P < 0.05). Finally, cooked rhubarb treatment (3 g/kg/day) effectively alleviated these changes in pancreatic tissue from chronic alcohol exposure (P < 0.05). These results indicate that chronic exposure to alcohol leads to changes in DNA methylation and protein expression of inflammatory genes, and cooked rhubarb may have a protective effect on the pancreatic tissue of rats.


Subject(s)
Epigenesis, Genetic , Ethanol/metabolism , Medicine, Chinese Traditional , Pancreas/pathology , Rheum , Animals , China , DNA Methylation/drug effects , Humans , Interleukin-10/metabolism , Interleukin-1alpha/metabolism , Male , Pancreas/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
17.
Chin Med J (Engl) ; 135(23): 2773-2784, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36729096

ABSTRACT

ABSTRACT: Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.


Subject(s)
Extracellular Traps , Pancreatitis , Humans , Pancreatitis/etiology , Acute Disease , Neutrophils , Inflammation/complications
18.
Acta Pharm Sin B ; 11(6): 1493-1512, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34221864

ABSTRACT

Macrophages are typically identified as classically activated (M1) macrophages and alternatively activated (M2) macrophages, which respectively exhibit pro- and anti-inflammatory phenotypes, and the balance between these two subtypes plays a critical role in the regulation of tissue inflammation, injury, and repair processes. Recent studies indicate that tissue cells and macrophages interact via the release of small extracellular vesicles (EVs) in processes where EVs released by stressed tissue cells can promote the activation and polarization of adjacent macrophages which can in turn release EVs and factors that can promote cell stress and tissue inflammation and injury, and vice versa. This review discusses the roles of such EVs in regulating such interactions to influence tissue inflammation and injury in a number of acute and chronic inflammatory disease conditions, and the potential applications, advantage and concerns for using EV-based therapeutic approaches to treat such conditions, including their potential role of drug carriers for the treatment of infectious diseases.

19.
Article in English | MEDLINE | ID: mdl-33815553

ABSTRACT

OBJECTIVE: Acute pain management after craniotomy can be challenging. Previous studies have shown inadequate pain control following the procedure. Oral medication can sometimes be delayed by postoperative nausea, and use of anesthetics may impair the assessment of brain function. We conducted this prospective study to evaluate the effect of acupuncture at the P6 acupoint on postoperative pain, nausea, and vomiting in patients undergoing craniotomy. METHODS: The authors conducted a randomized, placebo-controlled trial among 120 patients scheduled for craniotomy under general anesthesia. 120 patients were randomly assigned into an acupuncture group or a sham acupuncture group. All patients received standardized anesthesia and analgesia treatment. Acupuncture was executed in the recovery room after surgery. For the acupuncture group, the P6 points on each wrist were punctured perpendicularly to a depth of 20 mm. Needles were retained for 30 min and stimulated every 10 min to maintain the De-Qi sensation. For the sham acupuncture group, sham points on each wrist were punctured perpendicularly to a depth of 5 mm. Needles were retained for 30 min with no stimulation during the duration. The postoperative pain scores, PONV, and dose of tramadol were assessed 24 h, 48 h, and 72 h after surgery. RESULTS: A total of 117 patients completed the study. There was no statistically significant difference in baseline data between the two groups (P > 0.05). The VAS pain score of the acupuncture group was lower than that of the sham acupuncture group, and this difference was statistically significant (P=0.002). There was no difference in pain scores between the two groups during 0-24 h and 48-72 h (P > 0.05). The incidence of vomiting in the acupuncture group was lower than that in the sham acupuncture group during the 0-24 h period (13.8% vs. 28.8%, P=0.048). There was no difference in vomiting, however, during the 24-72 h period (P > 0.05). No significant differences were found in the degree of nausea and the dose of tramadol between the two groups at either time point in the acupuncture group and sham acupuncture group. CONCLUSION: The use of acupuncture at the P6 acupoint in neurosurgery patients did result in significantly lower pain scores and reduction in the incidence of vomiting after craniotomy. There were no significant side effects. Acupuncture at the P6 acupoint was well tolerated and safe in this patient population.

20.
Article in English | MEDLINE | ID: mdl-33293992

ABSTRACT

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is an alarming global health problem that is predicted to be the major cause of cirrhosis, hepatocellular carcinoma, and liver transplantation by next decade. Gut microbiota have been revealed playing an important role in the pathogenesis of NAFLD. Sheng-Jiang Powder (SJP), an empirical Chinese medicine formula to treat NAFLD, showed great hepatoprotective properties, but the impact on gut microbiota has never been identified. Therefore, we performed this study to investigate the effect of SJP on gut microbiota in NAFLD mice. METHODS: NAFLD was induced by 12 weeks' high-fat diet (HFD) feeding. Mice were treated with SJP/normal saline daily for 6 weeks. Blood samples were obtained for serum biochemical indices and inflammatory cytokines measurement. Liver tissues were obtained for pathological evaluation and oil red O staining. The expression of lipid metabolism-related genes was quantified by RT-PCR and Western blotting. Changes in gut microbiota composition were analyzed by the 16s rDNA sequencing technique. RESULTS: HFD feeding induced significant increase in bodyweight and serum levels of TG, TC, ALT, and AST. The pathological examination revealed obvious hepatic steatosis in HFD feeding mice. Coadministration of SJP effectively protected against bodyweight increase and lipid accumulation in blood and liver. Increased expression of PPARγ mRNA was observed in HFD feeding mice, but a steady elevation of PPARγ protein level was only found in SJP-treated mice. Meanwhile, the expression of FASN was much higher in HFD feeding mice. Microbiome analysis revealed obvious changes in gut microbiota composition among diverse groups. SJP treatment modulated the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, including norank-f-Erysipelotrichaceae and Roseburia. CONCLUSIONS: SJP is efficient in attenuating HFD-induced NAFLD, and it might be partly attributed to the regulation of gut microbiota.

SELECTION OF CITATIONS
SEARCH DETAIL
...