Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neural Regen Res ; 20(3): 821-835, 2025 Mar 01.
Article in English | MEDLINE | ID: mdl-38886955

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/ß-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.

2.
BMC Plant Biol ; 24(1): 619, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937683

ABSTRACT

BACKGROUND: Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS: In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION: Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.


Subject(s)
Colletotrichum , Disease Resistance , Gene Expression Profiling , Plant Diseases , Pyrus , Pyrus/microbiology , Pyrus/genetics , Colletotrichum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Transcriptome , Gene Expression Regulation, Plant
3.
Microbiol Spectr ; 12(6): e0041324, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687069

ABSTRACT

Our study aims to investigate the impact of probiotic consumption during pregnancy on gut microbiota functional diversity in healthy pregnant women. Thirty-two pregnant women were randomly assigned to two groups. The probiotic group (PG) consisted of pregnant women who consumed triple viable Bifidobacterium longum, Lactobacillus delbrueckii bulgaricus, and Streptococcus thermophilus tablets from the 32nd week of pregnancy until delivery. The functional profiles of the gut microbiota were predicted through high-throughput 16S rRNA sequencing results using PICRUSt software and referencing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the gut microbiota of the PG, the genera Blautia and Ruminococcus, as well as the species Subdoligranulum, showed significantly higher relative abundances compared to the control group (CG) (P < 0.05). At Level 1 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Organismal Systems in the PG (P < 0.05). In Level 2 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Infectious Disease in the PG (P < 0.05). In Level 3 of the KEGG signaling pathways, the PG exhibited a significant increase in the functional genes of the gut microbiota involved in ABC transporters, Oxidative phosphorylation, Folate biosynthesis, and Biotin metabolism (P < 0.05). The CG showed a significant increase in the functional genes related to Cysteine and methionine metabolism, Vitamin B6 metabolism, Tuberculosis, and Vibrio cholerae pathogenic cycle (P < 0.05). In conclusion, our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism in healthy pregnant women. IMPORTANCE: Probiotics are considered beneficial to human health. There is limited understanding of how probiotic consumption during pregnancy affects the functional diversity of the gut microbiota. The aim of our study is to investigate the impact of probiotic consumption during pregnancy on the functional diversity of the gut microbiota. Our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism. This could potentially open up new avenues for preventing various pregnancy-related complications. This also provides new insights into the effects of probiotic consumption during pregnancy on the gut microbiota and offers a convenient method for exploring the potential mechanisms underlying the impact of probiotics on the gut microbiota of pregnant women.


Subject(s)
Gastrointestinal Microbiome , Probiotics , RNA, Ribosomal, 16S , Humans , Female , Gastrointestinal Microbiome/drug effects , Probiotics/administration & dosage , Pregnancy , Adult , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects , Feces/microbiology , Streptococcus thermophilus/genetics , Bifidobacterium longum , Young Adult , Lactobacillus delbrueckii/genetics
4.
BMC Plant Biol ; 24(1): 166, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433195

ABSTRACT

BACKGROUND: Chlorophyll (Chl) is an agronomic trait associated with photosynthesis and yield. Gibberellin 2-oxidases (GA2oxs) have previously been shown to be involved in Chl accumulation. However, whether and how the PbrGA2ox proteins (PbrGA2oxs) mediate Chl accumulation in pear (Pyrus spp.) is scarce. RESULTS: Here, we aimed to elucidate the role of the pear GA2ox gene family in Chl accumulation and the related underlying mechanisms. We isolated 13 PbrGA2ox genes (PbrGA2oxs) from the pear database and identified PbrGA2ox1 as a potential regulator of Chl accumulation. We found that transiently overexpressing PbrGA2ox1 in chlorotic pear leaves led to Chl accumulation, and PbrGA2ox1 silencing in normal pear leaves led to Chl degradation, as evident by the regreening and chlorosis phenomenon, respectively. Meanwhile, PbrGA2ox1-overexpressing (OE) tobacco plants discernably exhibited Chl built-up, as evidenced by significantly higher Pn and Fv/Fm. In addition, RNA sequencing (RNA-seq), physiological and biochemical investigations revealed an increase in abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) concentrations and signaling pathways; a marked elevation in reducing and soluble sugar contents; and a marginal decline in the starch and sucrose levels in OE plants. Interestingly, PbrGA2ox1 overexpression did not prominently affect Chl synthesis. However, it indeed facilitated chloroplast development by increasing chloroplast number per cell and compacting the thylakoid granum stacks. These findings might jointly contribute to Chl accumulation in OE plants. CONCLUSION: Overall, our results suggested that GA2oxs accelerate Chl accumulation by stimulating chloroplast development and proved the potential of PbrGA2ox1 as a candidate gene for genetically breeding biofortified pear plants with a higher yield.


Subject(s)
Chlorophyll , Pyrus , Pyrus/genetics , Plant Breeding , Chloroplasts/genetics , Thylakoids
5.
Cell Commun Signal ; 22(1): 168, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454413

ABSTRACT

BACKGROUND: The effectiveness of anti-programmed cell death protein 1(PD-1)/programmed cell death 1 ligand 1(PD-L1) therapy in treating certain types of cancer is associated with the level of PD-L1. However, this relationship has not been observed in colorectal cancer (CRC), and the underlying regulatory mechanism of PD-L1 in CRC remains unclear. METHODS: Binding of TMEM160 to PD-L1 was determined by co-immunoprecipitation (Co-IP) and GST pull-down assay.The ubiquitination levels of PD-L1 were verified using the ubiquitination assay. Phenotypic experiments were conducted to assess the role of TMEM160 in CRC cells. Animal models were employed to investigate how TMEM160 contributes to tumor growth.The expression and clinical significance of TMEM160 and PD-L1 in CRC tissues were evaluated by immunohistochemistry(IHC). RESULTS: In our study, we made a discovery that TMEM160 interacts with PD-L1 and plays a role in stabilizing its expression within a CRC model. Furthermore, we demonstrated that TMEM160 hinders the ubiquitination-dependent degradation of PD-L1 by competing with SPOP for binding to PD-L1 in CRC cells. Regarding functionality, the absence of TMEM160 significantly inhibited the proliferation, invasion, metastasis, clonogenicity, and radioresistance of CRC cells, while simultaneously enhancing the cytotoxic effect of CD8 + T cells on tumor cells. Conversely, the upregulation of TMEM160 substantially increased these capabilities. In severely immunodeficient mice, tumor growth derived from lentiviral vector shTMEM160 cells was lower compared with that derived from shNC control cells. Furthermore, the downregulation of TMEM160 significantly restricted tumor growth in immune-competent BALB/c mice. In clinical samples from patients with CRC, we observed a strong positive correlation between TMEM160 expression and PD-L1 expression, as well as a negative correlation with CD8A expression. Importantly, patients with high TMEM160 expression exhibited a worse prognosis compared with those with low or no TMEM160 expression. CONCLUSIONS: Our study reveals that TMEM160 inhibits the ubiquitination-dependent degradation of PD-L1 that is mediated by SPOP, thereby stabilizing PD-L1 expression to foster the malignant progress, radioresistance, and immune evasion of CRC cells. These findings suggest that TMEM160 holds potential as a target for the treatment of patients with CRC.


Subject(s)
Colorectal Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Colorectal Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating , Nuclear Proteins , Repressor Proteins , Tumor Escape
6.
mSystems ; 9(3): e0125223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323818

ABSTRACT

For embryo implantation and fetal development, the maternal immune system undergoes dramatic changes. The mechanisms involved in inducing alterations of maternal immunity have not been fully clarified. Gut microbiome and metabolites were thought to influence the host immune response. During normal pregnancy, notable changes occur in the gut microbiota and metabolites. However, the relationship of these alterations to immune function during pregnancy remains unclear. In this study, we examined gut microbiota, fecal metabolites, plasma metabolites, and cytokines in pregnant women and non-pregnant women. Our findings revealed that, in comparison to non-pregnant women, pregnant women exhibit a significant increase in the relative abundance of Actinobacteriota and notable differences in metabolic pathways related to bile acid secretion. Furthermore, there was a marked reduction in pro-inflammatory cytokines levels in pregnant women. Correlation analyses indicated that these alterations in cytokines may be linked to specific gut bacteria and metabolites. Bacteria within the same microbial modules exhibited consistent effects on cytokines, suggesting that gut bacteria may function as functional groups. Mediation analysis further identified that certain bacteria might influence cytokines through metabolites, such as bile acids and arachidonic acid. Our findings propose potential biological connections between bacteria, metabolites, and immunity, which require further validation in future studies.IMPORTANCEA great number of studies have focused on diseases induced by intestinal microecological disorders and immune imbalances. However, the understanding of how intestinal microbiota interacts with immunity during normal pregnancy, which is fundamental to studying pathological pregnancies related to intestinal microbiota disturbances, has not been well elucidated. Our study employed multi-omics analysis to discover that changes in gut microbiota and metabolites during pregnancy can impact immune function. In addition, we identified several metabolites that may mediate the effect of gut microbes on plasma cytokines. Our study offered new insights into our understanding of the connections between the gut microbiome, metabolome, and the immune system during pregnancy.


Subject(s)
Gastrointestinal Microbiome , Humans , Female , Pregnancy , Cytokines/pharmacology , Multiomics , Metabolome , Immune System
7.
Nat Med ; 30(3): 749-761, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287168

ABSTRACT

Adjuvant chemotherapy benefits patients with resected pancreatic ductal adenocarcinoma (PDAC), but the compromised physical state of post-operative patients can hinder compliance. Biomarkers that identify candidates for prompt adjuvant therapy are needed. In this prospective observational study, 1,171 patients with PDAC who underwent pancreatectomy were enrolled and extensively followed-up. Proteomic profiling of 191 patient samples unveiled clinically relevant functional protein modules. A proteomics-level prognostic risk model was established for PDAC, with its utility further validated using a publicly available external cohort. More importantly, through an interaction effect regression analysis leveraging both clinical and proteomic datasets, we discovered two biomarkers (NDUFB8 and CEMIP2), indicative of the overall sensitivity of patients with PDAC to adjuvant chemotherapy. The biomarkers were validated through immunohistochemistry on an internal cohort of 386 patients. Rigorous validation extended to two external multicentic cohorts-a French multicentric cohort (230 patients) and a cohort from two grade-A tertiary hospitals in China (466 patients)-enhancing the robustness and generalizability of our findings. Moreover, experimental validation through functional assays was conducted on PDAC cell lines and patient-derived organoids. In summary, our cohort-scale integration of clinical and proteomic data demonstrates the potential of proteomics-guided prognosis and biomarker-aided adjuvant chemotherapy for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proteomics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prospective Studies
8.
J Adv Res ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38244773

ABSTRACT

BACKGROUND: Pancreatic cancer, referred to as the "monarch of malignancies," is a neoplastic growth mostly arising from the epithelial cells of the pancreatic duct and acinar cells. This particular neoplasm has a highly unfavorable prognosis due to its marked malignancy, inconspicuous initial manifestation, challenging early detection, rapid advancement, and limited survival duration. Cellular immunotherapy is the ex vivo culture and expansion of immune effector cells, granting them the capacity to selectively target malignant cells using specialized techniques. Subsequently, these modified cells are reintroduced into the patient's organism with the purpose of eradicating tumor cells and providing therapeutic intervention for cancer. PRESENT SITUATION: Presently, the primary cellular therapeutic modalities employed in the treatment of pancreatic cancer encompass CAR T-cell therapy, TCR T-cell therapy, NK-cell therapy, and CAR NK-cell therapy. AIM OF REVIEW: This review provides a concise overview of the mechanisms and primary targets associated with various cell therapies. Additionally, we will explore the prospective outlook of cell therapy in the context of treating pancreatic cancer.

9.
Heliyon ; 10(1): e24287, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234923

ABSTRACT

Pancreatic adenocarcinoma (PAAD) remains challenging to diagnose and treat clinically due to its difficult early diagnosis, low surgical resection rate, and high risk of postoperative recurrence and metastasis. SMAD4 is a classical mutated gene in pancreatic cancer and is lost in up to 60%-90 % of PAAD patients, and its mutation often predicts a poor prognosis and treatment resistance. In this study, based on the expression profile data in The Cancer Genome Atlas database, we identified a ceRNA network composed of 2 lncRNAs, 1 miRNA, and 4 mRNAs through differential expression analysis and survival prognosis analysis. Among them, high expression of KLK10/LIPH/PARD6B/SLC52A3 influenced the prognosis and overall survival of PAAD patients. We confirmed the high expression of these target genes in pancreatic tissue of pancreatic-specific SMAD4-deficient mice. In addition, immune infiltration analysis showed that the high expression of these target genes affects the tumor immune environment and contributes to the progression of PAAD. Abnormal overexpression of these target genes may be caused by hypermethylation. In conclusion, we found that KLK10/LIPH/PARD6B/SLC52A3 is a potential prognostic marker for PAAD based on a competing endogenous RNA-mediated mechanism and revealed the potential pathogenic mechanism by which deficient expression of SMAD4 promotes pancreatic cancer progression, which provides a new pathway and theoretical basis for targeted therapy or improved prognosis of pancreatic cancer. These data will help reveal potential therapeutic targets for pancreatic cancer and improve the prognosis of pancreatic cancer patients.

10.
Plants (Basel) ; 13(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276764

ABSTRACT

Drought and high-temperature stress are the main abiotic stresses that alone or simultaneously affect the yield and quality of pears worldwide. However, studies on the mechanisms of drought or high-temperature resistance in pears remain elusive. Therefore, the molecular responses of Pyrus betuleafolia, the widely used rootstock in pear production, to drought and high temperatures require further study. Here, drought- or high-temperature-resistant seedlings were selected from many Pyrus betuleafolia seedlings. The leaf samples collected before and after drought or high-temperature treatment were used to perform RNA sequencing analysis. For drought treatment, a total of 11,731 differentially expressed genes (DEGs) were identified, including 4444 drought-induced genes and 7287 drought-inhibited genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were more significantly enriched in plant hormone signal transduction, flavonoid biosynthesis, and glutathione metabolism. For high-temperature treatment, 9639 DEGs were identified, including 5493 significantly upregulated genes and 4146 significantly downregulated genes due to high-temperature stress. KEGG analysis showed that brassinosteroid biosynthesis, arginine metabolism, and proline metabolism were the most enriched pathways for high-temperature response. Meanwhile, the common genes that respond to both drought and high-temperature stress were subsequently identified, with a focus on responsive transcription factors, such as MYB, HSF, bZIP, and WRKY. These results reveal potential genes that function in drought or high-temperature resistance. This study provides a theoretical basis and gene resources for the genetic improvement and molecular breeding of pears.

11.
Cell Oncol (Dordr) ; 47(3): 939-950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38097870

ABSTRACT

PURPOSE: Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS: In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS: According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION: Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.


Subject(s)
Activating Transcription Factor 3 , Drug Resistance, Neoplasm , NF-kappa B , Pancreatic Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Signal Transduction , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , NF-kappa B/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Adenocarcinoma/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Phthalazines/pharmacology , Xenograft Model Antitumor Assays , Mice , Piperazines/pharmacology
12.
Front Microbiol ; 14: 1314257, 2023.
Article in English | MEDLINE | ID: mdl-38156011

ABSTRACT

Background: The community characteristics of the gut microbiota are not well defined and are not as widely studied as the functions of individual bacteria. This study aims to investigate the community composition of intestinal flora in women of childbearing age by conducting cluster analysis of gut microbiota and analyzing the relationship between different clusters and immune status. Methods: A total of 45 women of childbearing age were recruited in the study, including 15 non-pregnant women and 30 women in late pregnancy, and stool samples were collected twice during the third trimester, specifically at 32 weeks and at full term. The gut microbiota data was analyzed using 16S rRNA amplicon sequencing. Partitioning Around Medoids algorithm was employed to assess microbial clustering patterns. Microbial network for each cluster was performed and plasm cytokines were measured to analyze the relationship between specific genera and immune state in clusters. Results: There were three distinct clusters of intestinal community composition in women of childbearing age. Cluster 1 (PAM_1) was characterized by a high abundance of Bacteroides, while cluster 2 (PAM_2) showed higher levels of Bifidobacterium and Blautia, along with a significantly increased Firmicutes to Bacteroidota ratio. Cluster 3 (PAM_3) displayed a high abundance of Escherichia-shigella. PAM_1 was the most dominant cluster in non-pregnant women, and this dominant cluster was also one of the main in late pregnancy. At full term, the majority of subjects retained the same cluster as at 32 weeks, while a few experienced a shift. The microbial correlation networks differed across the three clusters, with PAM_1 exhibiting higher modularity and fewer connections. Analysis of the correlation between genera and plasma cytokines showed significant differences in their associations with cytokines between pregnancy and nonpregnancy within the same cluster, and the same genera had different effects in different clusters. Conclusion: Women of childbearing age exhibit three distribution patterns of gut microbiota, and the intestinal clusters reshaped during late pregnancy in a small population. Different clusters may have diverse immunomodulatory effects in different physiological states. When studying the gut microbiome during pregnancy, it is crucial to consider the cluster differences within healthy women.

13.
Front Cell Infect Microbiol ; 13: 1295111, 2023.
Article in English | MEDLINE | ID: mdl-38106467

ABSTRACT

In recent years, it has become evident that early-life intestinal flora plays a pivotal role in determining human health. Consequently, it is imperative to explore the establishment of neonatal intestinal flora and its influencing factors. Early neonatal intestinal flora is influenced by a multitude of factors, including maternal and infant-related factors, as well as external environment. This review summarizes the colonization mechanism of intestinal flora in the early life of newborns and discussed their influence on the establishment of neonatal intestinal flora, taking into account factors such as delivery mode, gestational age and feeding mode. Additionally, this review delves into the natural or artificial reconstruction of intestinal flora colonization defects in infants born via cesarean section and premature infants, with the goal of establishing a theoretical foundation for preventing and treating issues related to neonatal intestinal flora colonization and associated diseases.


Subject(s)
Cesarean Section , Gastrointestinal Microbiome , Infant , Infant, Newborn , Humans , Pregnancy , Female , Intestines , Infant, Premature
14.
Plants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202332

ABSTRACT

Cold stress is a prominent abiotic factor that adversely affects the growth and yield of pears, consequently restricting the cultivation range and resulting in substantial economic losses for the pear industry. Basic region-leucine zipper (bZIP) transcription factors are widely involved in multiple physiological and biochemical activities of plants, particularly in response to cold stress. In this study, the responsiveness of PbbZIP11 in pear to cold stress was investigated, and its role was explored by using pear callus and Arabidopsis thaliana. The findings revealed that overexpression of PbbZIP11 enhanced the tolerance of pear callus and Arabidopsis thaliana to cold stress. The antioxidant enzyme activities of transgenic plants were enhanced and the expression of C-repeat binding transcription factor (CBF) genes was increased as compared to wild-type plants. To better understand the biological function of PbbZIP11, mRNAs were isolated from overexpressed and wild-type Arabidopsis thaliana after cold stress for whole-genome sequencing. The results showed that the expression of some CBF downstream target genes changed after exposure to cold stress. The results suggested that the PbbZIP11 gene could participate in cold-stress signaling through the CBF-dependent pathway, which provides a theoretical basis for the PbbZIP11-mediated response to cold stress and for the genetic breeding of pear varieties with low-temperature tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL