Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
ACS Omega ; 9(17): 19723-19731, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708273

ABSTRACT

Exosomal microRNAs (miRNAs) are valuable biomarkers closely associated with cancer progression. Therefore, sensitive and specific exosomal miRNA biosensing has been employed for cancer diagnosis, prognosis, and prediction. In this study, a miRNA-based DNA nanonet assembly strategy is proposed, enabling the biosensing of exosomal miRNAs through dumbbell dual-hairpin under isothermal enzyme-free conditions. This strategy dexterously designs a specific dumbbell dual-hairpin that can selectively recognize exosomal miRNA, inducing conformational changes to cascade-generated X-shaped DNA structures, facilitating the extension of the X-shaped DNA in three-dimensional space, ultimately forming a DNA nanonet assembly. On the basis of the target miRNA, our design enriches the fluorescence signal through the cascade assembly of DNA nanonet and realizes the secondary signal amplification. Using exosomal miR-141 as the target, the resultant fluorescence sensing demonstrates an impressive detection limit of 57.6 pM and could identify miRNA sequences with single-base variants with high specificity. Through the analysis of plasma and urine samples, this method effectively distinguishes between benign prostatic hyperplasia, prostate cancer, and metastatic prostate cancer. Serving as a novel noninvasive and accurate screening and diagnostic tool for prostate cancer, this dumbbell dual-hairpin triggered DNA nanonet assembly strategy is promising for clinical applications.

2.
ACS Nano ; 18(21): 13950-13965, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751197

ABSTRACT

Manipulating the expression of cellular genes through efficient CRISPR/Cas9 delivery is rapidly evolving into a desirable tumor therapeutics. The exposure of CRISPR/Cas9 to a complex external environment poses challenges for conventional delivery carriers in achieving responsive and accurate release. Here, we report a Trojan horse-like nanocapsule for the on-demand delivery of CRISPR/Cas9 in a microRNA-responsive manner, enabling precise tumor therapy. The nanocapsule comprises a nanoassembled, engineered DNAzyme shell encasing a Cas9/sgRNA complex core. The DNAzyme, functioning as a catalytic unit, undergoes a conformational change in the presence of tumor-associated microRNA, followed by activating a positive feedback-driven autonomous catabolic cycle of the nanocapsule shell. This catabolic cycle is accomplished through chain reactions of DNAzyme "cleavage-hybridization-cleavage", which ensures sensitivity in microRNA recognition and effective release of Cas9/sgRNA. Utilizing this Trojan horse-like nanocapsule, as low as 1.7 pM microRNA-21 can trigger the on-demand release of Cas9/sgRNA, enabling the specific editing of the protumorigenic microRNA coding gene. The resulting upregulation of tumor suppressor genes induces apoptosis in tumor cells, leading to significant inhibition of tumor growth by up to 75.94%. The Trojan horse-like nanocapsule, with superior programmability and biocompatibility, is anticipated to serve as a promising carrier for tailoring responsive gene editing systems, achieving enhanced antitumor specificity and efficacy.


Subject(s)
CRISPR-Cas Systems , DNA, Catalytic , MicroRNAs , Nanocapsules , CRISPR-Cas Systems/genetics , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Humans , Nanocapsules/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Gene Editing , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry
3.
Travel Med Infect Dis ; 59: 102718, 2024.
Article in English | MEDLINE | ID: mdl-38582488

ABSTRACT

BACKGROUND: The diagnosis and evaluation of the severity of acute mountain sickness (AMS) continue to be problematic due to a lack of consensus on the inclusion of symptoms in a scoring system. Recent investigations highlight the significance of gastrointestinal symptoms in identifying this condition. However, the specific gastrointestinal symptoms associated with AMS have not been thoroughly elucidated in previous studies, and the underlying risk factors remain inadequately comprehended. METHODS: This study aimed to investigate the characteristics, trends, and risk factors related to gastrointestinal symptoms encountered during train travel to high altitude. A total of 69 passengers, specifically all with medical backgrounds, were surveyed 6 times over a period of 14 days. RESULTS: The daily incidence of abdominal discomfort was higher than non-gastrointestinal symptoms within 14 days. Gastrointestinal symptoms demonstrated a greater prevalence, longer duration, and increased risk compared to non-gastrointestinal symptoms, such as headaches. The symptoms of abdominal distension and bowel sound hyperaction were found to be prevalent and persistent among patients diagnosed with AMS, exhibiting a high incidence rate. Gender, age, body mass index (BMI), smoking habits, and alcohol consumption were identified as risk factors associated with the occurrence and duration of gastrointestinal symptoms. CONCLUSION: This study suggests that gastrointestinal symptoms are more common and persistent when traveling to the plateau by train. These symptoms should be taken into consideration in the further diagnosis and prevention of AMS. Therefore, this study provides a significant theoretical foundation for the prevention and treatment of AMS.


Subject(s)
Altitude Sickness , Gastrointestinal Diseases , Humans , Male , China/epidemiology , Female , Adult , Altitude Sickness/epidemiology , Middle Aged , Risk Factors , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/etiology , Travel , Incidence , Surveys and Questionnaires , Young Adult , Altitude , Prevalence , Aged , Railroads , Adolescent
4.
J Cell Mol Med ; 28(6): e18175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451044

ABSTRACT

The study aimed to identify the biomarkers for predicting coronary atherosclerotic lesions progression in patients with inflammatory bowel disease (IBD). Related transcriptome datasets were seized from Gene Expression Omnibus database. IBD-related modules were identified via Weighted Gene Co-expression Network Analysis. The 'Limma' was applied to screen differentially expressed genes between stable coronary artery disease (CAD) and acute myocardial infarction (AMI). Subsequently, we employed protein-protein interaction (PPI) network and three machine-learning strategies to further screen for candidate hub genes. Application of the receiver operating characteristics curve to quantitatively evaluate candidates to determine key diagnostic biomarkers, followed by a nomogram construction. Ultimately, we performed immune landscape analysis, single-gene GSEA and prediction of target-drugs. 3227 IBD-related module genes and 570 DEGs accounting for AMI were recognized. Intersection yielded 85 shared genes and mostly enriched in immune and inflammatory pathways. After filtering through PPI network and multi-machine learning algorithms, five candidate genes generated. Upon validation, CTSD, CEBPD, CYP27A1 were identified as key diagnostic biomarkers with a superior sensitivity and specificity (AUC > 0.8). Furthermore, all three genes were negatively correlated with CD4+ T cells and positively correlated with neutrophils. Single-gene GSEA highlighted the importance of pathogen invasion, metabolism, immune and inflammation responses during the pathogenesis of AMI. Ten target-drugs were predicted. The discovery of three peripheral blood biomarkers capable of predicting the risk of CAD proceeding into AMI in IBD patients. These identified biomarkers were negatively correlated with CD4+ T cells and positively correlated with neutrophils, indicating a latent therapeutic target.


Subject(s)
Coronary Artery Disease , Inflammatory Bowel Diseases , Myocardial Infarction , Humans , Coronary Artery Disease/genetics , Biomarkers , Computational Biology , Inflammatory Bowel Diseases/genetics , Machine Learning
5.
Small ; : e2310732, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299771

ABSTRACT

Spherical nucleic acids (SNAs) with exceptional colloidal stability, multiple modularity, and programmability are excellent candidates to address common molecular delivery-related issues. Based on this, the higher targeting accuracy and enhanced controllability of stimuli-responsive SNAs render them precise nanoplatforms with inestimable prospects for diverse biomedical applications. Therefore, tailored diagnosis and treatment with stimuli-responsive SNAs may be a robust strategy to break through the bottlenecks associated with traditional nanocarriers. Various stimuli-responsive SNAs are engineered through the incorporation of multifunctional modifications to meet biomedical demands with the development of nucleic acid functionalization. This review provides a comprehensive overview of prominent research in this area and recent advancements in the utilization of stimuli-responsive SNAs in biosensing, bioimaging, and therapeutics. For each aspect, SNA nanoplatforms that exhibit responsive behavior to both internal stimuli (including sequence, enzyme, redox reactions, and pH) and external stimuli (such as light and temperature) are highlighted. This review is expected to offer inspiration and guidance strategies for the rational design and development of stimuli-responsive SNAs in the field of biomedicine.

7.
Dev Comp Immunol ; 153: 105137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224762

ABSTRACT

Aeromonas veronii is an opportunistic pathogen that causes diseases in aquatic animals, but its key virulence factors remain unclear. We screened the gene tolC with significantly different expression levels in the two isolates, A. veronii GL2 (higher virulence) and A. veronii FO1 (lower virulence). Therefore, we constructed mutant strain ΔtolC and analyzed its immunological properties. ΔtolC exhibited the reduced ability of biofilms formation, inhibited envelope stress response mediated by several antibiotics except cefuroxime, implying the ability to evade host immunity might be restrained. Challenge tests showed that the LD50 of ΔtolC was 10.89-fold than that of GL2. Enzymatic activities of ΔtolC group were significantly lower and peak time was delayed to 12 h, as demonstrated by qRT-PCR results. Histopathological examination displayed that the degree of tissue damage in ΔtolC group was alleviated. The results show that tolC is an important virulence factor of A. veronii, which provides references for live-attenuated vaccine.


Subject(s)
Aeromonas , Bivalvia , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas veronii , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Fresh Water , Immunity
8.
Biosens Bioelectron ; 246: 115841, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38006701

ABSTRACT

There is an urgent need to accurately quantify tumor-derived exosomes, which have emerged as promising non-invasive tumor diagnostic biomarkers. Herein, a bispecific-aptamer sandwich-type gold nanoparticle-modified electrochemical aptasensor was developed based on a four-way junction (4-WJ)-triggered dual rolling circle amplification (RCA)-assisted methylene blue (MB)/G-quadruplex strategy for extremely specific and sensitive exosome detection. This aptamer/exosome/aptamer sandwich-type design contained a CD63-specific aptamer and a cancerous mucin-1 (MUC1) protein-specific aptamer. The CD63 aptamer modified on a gold electrode captured exosomes, and then the sandwich-type aptasensor was formed with the addition of the MUC1 aptamer. The MUC1 aptamer's 3'-end sequence facilitated the formation of 4-WJ, assisted by a molecular beacon probe and a binary DNA probe. Subsequently, a dual-RCA reaction was triggered by binding to two cytosine-rich circle DNA templates at both ends of 4-WJ. Ultimately, dual-RCA products containing multiple G-quadruplex conformations were generated with the assistance of K+ to trap abundant MB indicators and amplify electrochemical signals. The aptasensor exhibited high specificity, sensitivity, repeatability, and stability toward MCF-7-derived exosomes, with a detection limit of 20 particles/mL and a linear range of 1 × 102 to 1 × 107 particles/mL. Moreover, it showed excellent applicability in clinical settings to recover exosomes in normal human serum. Our aptasensor is anticipated to serve as a versatile platform for detecting various specific aptamer-based targets in biomedical and bioanalytical applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Metal Nanoparticles , Neoplasms , Humans , Exosomes/metabolism , Gold/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection , Electrochemical Techniques , DNA/chemistry , Neoplasms/diagnosis , Neoplasms/metabolism
9.
Eur J Med Res ; 28(1): 612, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115055

ABSTRACT

OBJECTIVE: This study aimed to investigate the potential risk factors associated with disseminated cryptococcosis in HIV-negative individuals. METHODS: A total of 106 HIV-negative patients with cryptococcal disease were enrolled. The observation group consisted of patients with disseminated cryptococcosis (DC), whereas the control groups included patients with pulmonary cryptococcosis (PC) and cryptococcal meningitis (CM). Univariate and multivariate logistic regression algorithms were used to explore the significant clinical and laboratory characteristics that affect the progression of cryptococcal infections. Finally, receiver operating characteristics (ROC) curves are applied to assess the diagnostic value of identified risk factors.LE: Kindly check the edit made in the title.I agree RESULTS: Of the 106 patients, 57 were diagnosed with pulmonary cryptococcosis, 22 with cryptococcal meningitis, and 27 with disseminated cryptococcosis. The logistic regression equation included five variables: diabetes, decompensated liver cirrhosis, long-term use of immunosuppressive agents, decreased serum albumin level, and elevated plasma cytokine IL-10 level. The ROC curves showed that albumin (AUC > 0.7), IL-10 (AUC > 0.7) and decompensated liver cirrhosis (AUC > 0.6) have relatively high diagnostic capacity in predicting the progression of Cryptococcus. CONCLUSION: This study identified elevated IL-10 levels as an independent risk factor for developing disseminated cryptococcosis in the control groups. Furthermore, decompensated liver cirrhosis and decreased serum albumin independently affected the progression of cryptococcosis in the CM and PC groups, respectively.


Subject(s)
Cryptococcosis , Cryptococcus , HIV Infections , Meningitis, Cryptococcal , Humans , Meningitis, Cryptococcal/diagnosis , Interleukin-10 , Retrospective Studies , Cryptococcosis/complications , Cryptococcosis/diagnosis , Risk Factors , Liver Cirrhosis , Serum Albumin , HIV Infections/complications
10.
Bioeng Transl Med ; 8(6): e10565, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023705

ABSTRACT

Postsurgical adhesions are a common complication of surgical procedures that can lead to postoperative pain, bowel obstruction, infertility, as well as complications with future procedures. Several agents have been developed to prevent adhesion formation, such as barriers, anti-inflammatory and fibrinolytic agents. The Food and Drug Administration (FDA) has approved the use of physical barrier agents, but they have been associated with conflicting clinical studies and controversy in the clinical utilization of anti-adhesion barriers. In this review, we summarize the human anatomy of the peritoneum, the pathophysiology of adhesion formation, the current prevention agents, as well as the current research progress on adhesion prevention. The early cellular events starting with injured mesothelial cells and incorporating macrophage response have recently been found to be associated with adhesion formation. This may provide the key component for developing future adhesion prevention methods. The current use of physical barriers to separate tissues, such as Seprafilm®, composed of hyaluronic acid and carboxymethylcellulose, can only reduce the risk of adhesion formation at the end stage. Other anti-inflammatory or fibrinolytic agents for preventing adhesions have only been studied within the context of current research models, which is limited by the lack of in-vitro model systems as well as in-depth study of in-vivo models to evaluate the efficiency of anti-adhesion agents. In addition, we explore emerging therapies, such as gene therapy and stem cell-based approaches, that may offer new strategies for preventing adhesion formation. In conclusion, anti-adhesion agents represent a promising approach for reducing the burden of adhesion-related complications in surgical patients. Further research is needed to optimize their use and develop new therapies for this challenging clinical problem.

11.
Nat Commun ; 14(1): 7785, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012136

ABSTRACT

Quantum-dot light-emitting diodes promise a new generation of high-performance and solution-processed electroluminescent light sources. Understanding the operational degradation mechanisms of quantum-dot light-emitting diodes is crucial for their practical applications. Here, we show that quantum-dot light-emitting diodes may exhibit an anomalous degradation pattern characterized by a continuous increase in electroluminescent efficiency upon electrical stressing, which deviates from the typical decrease in electroluminescent efficiency observed in other light-emitting diodes. Various in-situ/operando characterizations were performed to investigate the evolutions of charge dynamics during the efficiency elevation, and the alterations in electric potential landscapes in the active devices. Furthermore, we carried out selective peel-off-and-rebuild experiments and depth-profiling analyses to pinpoint the critical degradation site and reveal the underlying microscopic mechanism. The results indicate that the operation-induced efficiency increase results from the degradation of electron-injection capability at the electron-transport layer/cathode interface, which in turn leads to gradually improved charge balance. Our work provides new insights into the degradation of red quantum-dot light-emitting diodes and has far-reaching implications for the design of charge-injection interfaces in solution-processed light-emitting diodes.

12.
Inorg Chem ; 62(43): 17961-17971, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37857562

ABSTRACT

The employment of stoichiometric alcohols and amines for imine synthesis under mild and green reaction conditions is still a challenge in the field. In this work, based on our research foundation in the thermocatalytic synthesis of imines over ceria, a CdS/CeO2 heterojunction photocatalyst was constructed and successfully realized the atom-economic synthesis of imines under visible light without additives at room temperature. Mechanistic experiments and corresponding characterizations indicated that the CdS/CeO2 heterojunction can improve the separation efficiency of photogenerated carriers, which can be further enhanced by the Ce4+/Ce3+ redox pair by rapidly combining photogenerated e-. The in situ-reduced Ce3+ can better activate O2 to form Ce-O-O·, which, together with h+, efficiently accelerates alcohol oxidation, which is the rate-determined step for the synthesis of imines via oxidative coupling reaction of alcohol and amine. In addition, our photocatalyst exhibited fairly decent reusability and substrate universality. This work solves problems of using base additives and excess amine or alcohol in the reported photocatalytic systems and provides new insight for designing CeO2-based photocatalytic oxidation catalysts.

13.
Molecules ; 28(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37764354

ABSTRACT

Bimetallic sulfides offer high theoretical specific capacitance and good stability as electrode materials due to their diverse redox reactions, larger specific surface areas, and better conductivity. The morphology of the electrode material is an important influencing factor for the electrochemical properties. Herein, a series of ZnCoS electrode materials with different morphologies were prepared by varying the solvent in the solvothermal reaction, and the effects of different microstructures on the electrochemical properties of ZnCoS were investigated. The ratio of water and ethanol in the solvent was controlled to modulate the microstructure of the as-prepared ZnCoS materials. XRD and XPS revealed the physical and chemical structure of the ZnCoS materials. SEM and TEM observations showed that the microstructure of ZnCoS transformed from one-dimensional wires to two-dimensional sheets with increasing amounts of ethanol. The maximum specific capacitance of the as-prepared ZnCoS materials is 6.22 F cm-2 at a current density of 5 mA cm-2, which is superior to that of most previously reported bimetallic sulfides. The enhanced electrochemical performance could be ascribed to its sheet-assembled spherical structure, which not only shortens the path of ion diffusion but also increases the contact between surface active sites and the electrolyte. Moreover, the spherical structure provides numerous void spaces for buffering the volume expansion and penetration of the electrolyte, which would be favorable for electrochemical reactions. Furthermore, the ZnCoS electrodes were coupled with activated carbon (AC) electrodes to build asymmetric supercapacitors (ASCs). The ASC device exhibits a maximum energy density of 0.124 mWh cm-2 under a power density of 2.1 mW cm-2. Moreover, even under a high-power density of 21 mW cm-2, the energy density can still reach 0.055 mWh cm-2.

14.
J Adv Res ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37717911

ABSTRACT

INTRODUCTION: Prophylactic antifungal therapy has been widely used for critical patients, but it has failed to improve patient prognosis and has become a hot topic. This may be related to disruption of fungal homeostasis, but the mechanism of fungi action is not clear. As a common pathway in critical patients, intestinal ischemia-reperfusion (IIR) injury is fatal and regulated by gut microbiota. However, the exact role of enteric fungi in IIR injury remains unclear. OBJECTIVES: This is a clinical study that aims to provide new perspectives in clarifying the underlying mechanism of IIR injury and propose potential strategies that could be relevant for the prevention and treatment of IIR injury in the near future. METHODS: ITS sequencing was performed to detect the changes in fungi before and after IIR injury. The composition of enteric fungi was altered by pretreatment with single-fungal strains, fluconazole and mannan, respectively. Intestinal morphology and function impairment were evaluated in the IIR injury mouse model. Intestinal epithelial MODE-K cells and macrophage RAW264.7 cells were cultured for in vitro tests. RESULTS: Fecal fungi diversity revealed the obvious alteration in IIR patients and mice, accompanied by intestinal epithelial barrier dysfunction. Fungal colonization and mannan supplementation could reverse intestinal morphology and function impairment that were exacerbated by fluconazole via inhibiting the expression of SAA1 from macrophages and decreasing pyroptosis of intestinal epithelial cells. Clodronate liposomes were used to deplete the number of macrophages, and it was demonstrated that the protective effect of mannan was dependent on macrophage involvement. CONCLUSION: This finding firstly validates that enteric fungi play a crucial role in IIR injury. Preventive antifungal treatment should consider damaging fungal balance. This study provides a novel clue to clarify the role of enteric fungi in maintaining intestinal homeostasis.

15.
J Adv Res ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37689240

ABSTRACT

INTRODUCTION: ß-Elemene (ß-ELE), derived from Curcuma wenyujin, has anticancer effect on non-small cell lung cancer (NSCLC). However, the potential target and detail mechanism were still not clear. TFEB is the master regulator of lysosome biogenesis. Ferroptosis, a promising strategy for cancer therapy could be triggered via suppression on glutathione peroxidase 4 (GPX4). Weather TFEB-mediated lysosome degradation contributes to GPX4 decline and how ß-ELE modulates on this process are not clear. OBJECTIVES: To observe the action of ß-ELE on TFEB, and the role of TFEB-mediated GPX4 degradation in ß-ELE induced ferroptosis. METHODS: Surface plasmon resonance (SPR) and molecular docking were applied to observe the binding affinity of ß-ELE on TFEB. Activation of TFEB and lysosome were observed by immunofluorescence, western blot, flow cytometry and qPCR. Ferroptosis induced by ß-ELE was observed via lipid ROS, a labile iron pool (LIP) assay and western blot. A549TFEB KO cells were established via CRISPR/Cas9. The regulation of TFEB on GPX4 and ferroptosis was observed in ß-ELE treated A549WT and A549TFEB KO cells, which was further studied in orthotopic NOD/SCID mouse model. RESULTS: ß-ELE can bind to TFEB, notably activate TFEB, lysosome and transcriptional increase on downstream gene GLA, MCOLN1, SLC26A11 involved in lysosome activity in EGFR wild-type NSCLC cells. ß-ELE increased GPX4 ubiquitination and lysosomal localization, with the increase on lysosome degradation of GPX4. Furthermore, ß-ELE induced ferroptosis, which could be promoted by TFEB overexpression or compromised by TFEB knockout. Genetic knockout or inactivation of TFEB compromised ß-ELE induced lysosome degradation of GPX4, which was further demonstrated in orthotopic NSCLC NOD/SCID mice model. CONCLUSION: This study firstly demonstrated that TFEB promoted GPX4 lysosome degradation contributes to ß-ELE induced ferroptosis in EGFR wild-type NSCLC, which gives a clue that TFEB mediated GPX4 degradation would be a novel strategy for ferroptosis induction and NSCLC therapy.

16.
Microb Pathog ; 183: 106315, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37611778

ABSTRACT

Aeromonas veronii is a common bacterium found in a variety of aquatic environments, capable of causing a diverse array of diseases in both aquatic animals and humans. Therefore, evaluating the pathogenicity of A. veronii and implementing measures to control its spread are essential. In this study, a strain JW-4, identified as A. veronii, was isolated from diseased Scaphesthes macrolepis, a grade Ⅱ protected animal in China. To investigate the pathogenicity of the strain, fish were fed with serial levels JW-4 supplemented diet or basal diet (control group 1, CG1) for 28 days (d). Results showed that JW-4 stimulated an immune response, evidenced by an increase in immune-related enzyme activities (GOT and GPT) of serum and liver and an upregulation of genes expression levels (TNF-α and IFN-γ) of liver and spleen, and these effects gradually decreased over time. Histopathological examination revealed that JW-4 could alter the tissue structure of immune organs, such as liver and kidney. These changes were accompanied by vacuolar degeneration, nuclear dissolution, and an increased lymphocyte count. To assess protective effects of a vaccine against this strain, fish were injected with an inactivated vaccine (immunization group, IG) or 0.85% sterile saline (control group 2, CG2) for 28-day observation period, then challenged with JW-4 on the 28th day. The inactivated vaccine enhanced total and specific IgM to A. veronii levels of the fish, resulting in a relative percentage survival of 75% in IG. These findings provide a foundation for identifying pathogenic bacteria and developing more effective prophylactic strategies in aquaculture.


Subject(s)
Carps , Animals , Humans , Vaccines, Inactivated , Aeromonas veronii/genetics , Virulence , Liver
17.
J Biomol Struct Dyn ; : 1-12, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37449753

ABSTRACT

Marfan syndrome (MFS) is a hereditary disease with high mortality. This study aimed to explore peripheral blood potential markers and underlying mechanisms in MFS via a series bioinformatics and machine learning analysis. First, we downloaded two MFS datasets from the GEO database. A total of 215 differentially expressed genes (DEGs) and 78 differentially expressed miRNAs (DEMs) were identified via "Limma" package. 60 DEGs, mainly enriched in abnormal transportation of structure and energy substances, were selected after protein-protein interaction (PPI) network construction, of which 20 were chosen for machine learning after three algorithms (betweenness, closeness, and degree) filtration using Cytoscape. Four overlapping DEGs (ACTN1, CFTR, GCKR, LAMA3) were finally selected as the candidate markers based on three machine-learning approaches (Lasso, random forest, and support vector machine-recursive feature elimination). Furthermore, we collected peripheral blood from MFS patients and healthy control to validate the findings and the results showed that compared with the control, the expression of the four DEGs was all statistically different in MFS patients validated by qRT-PCR. Besides, the area under the receiver operating characteristics curve was greater than 0.8 for each DEG. Single-sample gene-set enrichment analysis showed that the four DEGs were strongly associated with inflammation and myogenesis pathway. Finally, we constructed the mRNA-miRNA network based on the intersection of DEMs and predicted miRNAs targeting DEGs. In conclusion, our study partially provided four potential markers for MFS pathogenesis.Communicated by Ramaswamy H. Sarma.

18.
Cancers (Basel) ; 15(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37509352

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role in activating naive T cells through presenting antigen information, thereby influencing immunity and anti-cancer responses. Fascin, a 55-kDa actin-bundling protein, is highly expressed in mature DCs and serves as a marker protein for their identification. However, the precise role of fascin in intratumoral DCs remains poorly understood. In this review, we aim to summarize the role of fascin in both normal and intratumoral DCs. In normal DCs, fascin promotes immune effects through facilitating DC maturation and migration. Through targeting intratumoral DCs, fascin inhibitors enhance anti-tumor immune activity. These roles of fascin in different DC populations offer valuable insights for future research in immunotherapy and strategies aimed at improving cancer treatments.

19.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298755

ABSTRACT

Dual-ion batteries (DIBs) are a new kind of energy storage device that store energy involving the intercalation of both anions and cations on the cathode and anode simultaneously. They feature high output voltage, low cost, and good safety. Graphite was usually used as the cathode electrode because it could accommodate the intercalation of anions (i.e., PF6-, BF4-, ClO4-) at high cut-off voltages (up to 5.2 V vs. Li+/Li). The alloying-type anode of Si can react with cations and boost an extreme theoretic storage capacity of 4200 mAh g-1. Therefore, it is an efficient method to improve the energy density of DIBs by combining graphite cathodes with high-capacity silicon anodes. However, the huge volume expansion and poor electrical conductivity of Si hinders its practical application. Up to now, there have been only a few reports about exploring Si as an anode in DIBs. Herein, we prepared a strongly coupled silicon and graphene composite (Si@G) anode through in-situ electrostatic self-assembly and a post-annealing reduction process and investigated it as an anode in full DIBs together with home-made expanded graphite (EG) as a fast kinetic cathode. Half-cell tests showed that the as-prepared Si@G anode could retain a maximum specific capacity of 1182.4 mAh g-1 after 100 cycles, whereas the bare Si anode only maintained 435.8 mAh g-1. Moreover, the full Si@G//EG DIBs achieved a high energy density of 367.84 Wh kg-1 at a power density of 855.43 W kg-1. The impressed electrochemical performances could be ascribed to the controlled volume expansion and improved conductivity as well as matched kinetics between the anode and cathode. Thus, this work offers a promising exploration for high energy DIBs.


Subject(s)
Graphite , Alloys , Electrodes , Ions , Silicon , Electric Power Supplies
20.
J Phys Chem Lett ; 14(25): 5812-5817, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37338303

ABSTRACT

Quantum-dot light-emitting diodes (QLEDs) show great potential in next-generation display and lighting technologies. Further reducing the resistances of the high-efficiency QLEDs is critical to improving their luminous efficiencies and lowering their power consumption. However, wet-chemistry methods to improve the conductivities of ZnO-based electron-transport layers (ETLs) often lead to trade-offs in the external quantum efficiencies (EQEs) of QLEDs. Here, we report a facile approach toward highly conductive QLEDs by in situ diffusion of Mg atoms into the ZnO-based ETLs. We demonstrate that thermally evaporated Mg can spread deep into the ZnO-based ETL with a long penetration length, generating oxygen vacancies that promote the electron-transport properties. The Mg-diffused ETLs enhance the conductivities and luminous efficiencies of state-of-the-art QLEDs without sacrificing the EQEs. This strategy is applied to QLEDs with various optical architectures, leading to significant enhancements in the current densities, luminances, and luminous efficiencies. We expect that our method could be extended to other solution-processed LEDs using ZnO-based ETLs.

SELECTION OF CITATIONS
SEARCH DETAIL
...