Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607116

ABSTRACT

Compared with purely electrical neuromorphic devices, those stimulated by optical signals have gained increasing attention due to their realistic sensory simulation. In this work, an optoelectronic neuromorphic device based on a photoelectric memristor with a Bi2FeCrO6/Al-doped ZnO (BFCO/AZO) heterostructure is fabricated that can respond to both electrical and optical signals and successfully simulate a variety of synaptic behaviors, such as STP, LTP, and PPF. In addition, the photomemory mechanism was identified by analyzing the energy band structures of AZO and BFCO. A convolutional neural network (CNN) architecture for pattern classification at the Mixed National Institute of Standards and Technology (MNIST) was used and improved the recognition accuracy of the MNIST and Fashion-MNIST datasets to 95.21% and 74.19%, respectively, by implementing an improved stochastic adaptive algorithm. These results provide a feasible approach for future implementation of optoelectronic synapses.

2.
Article in English | MEDLINE | ID: mdl-38662912

ABSTRACT

The conventional von Neumann architecture has proven to be inadequate in keeping up with the rapid progress in artificial intelligence. Memristors have become the favored devices for simulating synaptic behavior and enabling neuromorphic computations to address challenges. An artificial synapse utilizing the perovskite structure PbHfO3 (PHO) has been created to tackle these concerns. By employing the sol-gel technique, a ferroelectric film composed of Au/PHO/FTO was created on FTO/glass for the purpose of this endeavor. The artificial synapse is composed of Au/PHO/FTO and exhibits learning and memory characteristics that are similar to those observed in biological neurons. The recognition accuracy for both MNIST and Fashion-MNIST data sets saw an increase, reaching 92.93% and 76.75%, respectively. This enhancement resulted from employing a convolutional neural network architecture and implementing an improved stochastic adaptive algorithm. The presented findings showcase a viable approach to achieve neuromorphic computation by employing artificial synapses fabricated with PHO.

3.
Mater Horiz ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563639

ABSTRACT

Neuromorphic computing, which mimics biological neural networks, is widely regarded as the optimal solution for addressing the limitations of traditional von Neumann computing architecture. In this work, an adjustable multistage resistance switching ferroelectric Bi2FeCrO6 diode artificial synaptic device was fabricated using a sol-gel method with a simple process. The device exhibits nonlinearity in its electrical characteristics, demonstrating tunable multistage resistance switching behavior and a strong ferroelectric diode effect through the manipulation of ferroelectric polarization. One of its salient advantages resides in its capacity to dynamically regulate its polarization state in response to an external electric field, thereby facilitating the fine-tuning of synaptic connection strength while maintaining synaptic stability. The device is capable of accurately simulating the fundamental properties of biological synapses, including long/short-term plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity. Additionally, the device exhibits a distinctive photoelectric response and is capable of inducing synaptic plasticity by light signal activation. The utilization of a femtosecond laser for the scrutiny of carrier transport mechanisms imparts profound insights into the intricate dynamics governing the optical memory effect. Furthermore, utilizing a convolutional neural network (CNN) architecture, the recognition accuracy of the MNIST and fashion MNIST datasets was improved to 95.6% and 78%, respectively, through the implementation of improved random adaptive algorithms. These findings present a new opportunity for utilizing Bi2FeCrO6 materials in the development of artificial synapses for neuromorphic computation.

4.
Mater Horiz ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525789

ABSTRACT

The research found that after doping with rare earth elements, a large number of electrons and holes will be produced on the surface of AlN, which makes the material have the characteristics of spontaneous polarization. A new type of ferroelectric material has made a new breakthrough in the application of nitride-materials in the field of integrated devices. In this paper, the application prospects and development trends of ferroelectric material ScAlN in memristors are reviewed. Firstly, various fabrication processes and structures of the current ScAlN thin films are described in detail to explore the implementation of their applications in synaptic devices. Secondly, a series of electrical properties of ScAlN films, such as the current switching ratio and long-term cycle durability, were tested to explore whether their electrical properties could meet the basic needs of memristor device materials. Finally, a series of summaries on the current research studies of ScAlN thin films in the synaptic simulation are made, and the working state of ScAlN thin films as a synaptic device is observed. The results show that the ScAlN ferroelectric material has high residual polarization, no wake-up function, excellent stability and obvious STDP behavior, which indicates that the modified material has wide application prospects in the research and development of memristors.

5.
Article in English | MEDLINE | ID: mdl-37924319

ABSTRACT

Antibiotics play an essential role in the treatment of various diseases. However, the overuse of antibiotics has led to the pollution of water bodies and food safety, affecting human health. Herein, we report a dual-emission MOF-based flexible sensor for the detection of antibiotics in water, which was prepared by first encapsulating rhodamine B (RhB) by a zeolite imidazolium ester skeleton (ZIF-8) and then blending it with polyvinylidene difluoride (PVDF). The luminescent properties, structural tunability, and flexible porosity of the MOF-based composites were combined with the processability and flexibility of polymers to prepare luminescent membranes. The sensor is capable of dual-emission ratiometric fluorescence sensing of nitrofurantoin (NFT) and oxytetracycline (OTC), exhibiting sensitive detection of fluorescence burst and fluorescence enhancement, respectively, with detection limits of 0.012 µM and 8.9 nM. With the advantages of visual detection, high sensitivity, short detection time, and simplicity, the highly sensitive ratiometric fluorescent flexible sensor has great potential for detecting antibiotics in an aqueous environment. It will further stimulate interest in luminescent MOF-based mixed matrix membranes and their sensing applications.

6.
ACS Appl Mater Interfaces ; 15(25): 30486-30494, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37315104

ABSTRACT

Flexible tactile sensors with high sensitivity, a broad pressure detection range, and high resolution are highly desired for the applications of health monitoring, robots, and the human-machine interface. However, it is still challenging to realize a tactile sensor with high sensitivity and resolution over a wide detection range. Herein, to solve the abovementioned problem, we demonstrate a universal route to develop a highly sensitive tactile sensor with high resolution and a wide pressure range. The tactile sensor is composed of two layers of microstructured flexible electrodes with high modulus and conductive cotton fabric with low modulus. By optimizing the sensing films, the fabricated tactile sensor shows a high sensitivity of 8.9 × 104 kPa-1 from 2 Pa to 250 kPa because of the high structural compressibility and stress adaptation of the multilayered composite films. Meanwhile, a fast response speed of 18 ms, an ultrahigh resolution of 100 Pa over 100 kPa, and excellent durability over 20 000 loading/unloading cycles are demonstrated. Moreover, a 6 × 6 tactile sensor array is fabricated and shows promising potential application in electronic skin (e-skin). Therefore, employing multilayered composite films for tactile sensors is a novel strategy to achieve high-performance tactile perception in real-time health monitoring and artificial intelligence.

7.
Polymers (Basel) ; 15(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37177322

ABSTRACT

Pressure sensors show significant potential applications in health monitoring, bio-sensing, electronic skin, and tactile perception. Consequently, tremendous research interest has been devoted to the development of high-performance pressure sensors. In this paper, recent progress on the polymer composite-based flexible pressure sensor is reviewed. The parameters of pressure sensors, including sensitivity, linear response range, detection limit, response speed, and reliability, are first introduced. Secondly, representative types of pressure sensors and relevant working principles are introduced and discussed. After that, the applications in human physiology monitoring, health monitoring, artificial skin, and self-powered smart system are listed and discussed in detail. Finally, the remaining challenges and outlook of polymer composite-based flexible sensors are summarized at the end of this review paper. This work should have some impact on the development of high-performance flexible pressure sensors.

8.
Nanoscale ; 15(13): 6263-6272, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36908277

ABSTRACT

In the last two decades, nanogenerators have been studied inorder to solve the power supply problems of electronic devices. Triboelectric nanogenerators (TENGs) have gained widespread attention due to their excellent properties and wide range of applications. However, previous studies frequently ignored numerous application-related issues and even wasted some of the benefits of the TENG itself in favor of enhanced performance. Here, we propose a TENG based on BaTiO3 (BTO)-polydimethylsiloxane (PDMS) composite films with low cost and simple preparation, where its maximum output performance is obtained when the mass proportion of BTO to PDMS is 40%. In addition, we demonstrate how the single-electrode TENG may be used as a self-powered touch sensor that can communicate with a microcontroller unit (MCU) to turn LED lights on and off. This practical example will provide a valuable reference for the application of low-cost self-powered sensors in wearable devices, Internet of Things, human-machine interactions and other fields. Furthermore, we discovered a number of issues that were rarely or never addressed in previous studies and provide some solutions, such as a signal processing method for a TENG-based self-powered sensor. It serves as a foundation for future investigations on the performance assessment and application of TENGs.

9.
Small ; 19(27): e2300283, 2023 07.
Article in English | MEDLINE | ID: mdl-36965088

ABSTRACT

Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human-machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.


Subject(s)
Artificial Intelligence , Stereognosis , Humans , Electric Conductivity , Electricity
10.
Molecules ; 28(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838615

ABSTRACT

Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types-piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.


Subject(s)
Nanocomposites , Wearable Electronic Devices , Humans , Polymers , Artificial Intelligence , Nanocomposites/chemistry , Touch
11.
J Colloid Interface Sci ; 630(Pt A): 23-33, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36215821

ABSTRACT

Adhesion between flexible devices and skin surface facilitates portability of devices and reliable signal acquisition from human body, which is essential for medical therapy devices or monitoring systems. Here, we utilize a simple, cost-effective, and scalable layer-by-layer dip-coating method to fabricate a skin-adhesive multifunctional textile-based device, consisting of three parts: low-cost and easily available airlaid paper (AP) substrate, conductive MXene sensitive layer, and adhesive polydimethylsiloxane (PDMS). The adhesive layer of lightly cross-linked PDMS enables the device to form conformal contact with skin even during human joint bending. The smart textile device exhibits excellent electro-thermal and photo-thermal conversion performance with good cycling stability and tunability. Furthermore, the textile electronics show good electromagnetic interference (EMI) shielding properties due to the good electrical conductivity, as well as sensitive and stable pressure sensing properties for human motion detection. Consequently, this efficient strategy provides a possible way to design multifunctional and wearable electronic textiles for medical applications.


Subject(s)
Wearable Electronic Devices , Humans , Adhesives , Heating , Textiles , Electronics , Electric Conductivity
12.
Micromachines (Basel) ; 13(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208408

ABSTRACT

With the data explosion in the intelligent era; the traditional von Neumann computing system is facing great challenges of storage and computing speed. Compared to the neural computing system, the traditional computing system has higher consumption and slower speed. However; the feature size of the chip is limited due to the end of Moore's Law. An artificial synapse based on halide perovskite CsPbI3 was fabricated to address these problems. The CsPbI3 thin film was obtained by a one-step spin-coating method, and the artificial synapse with the structure of Au/CsPbI3/ITO exhibited learning and memory behavior similar to biological neurons. In addition, the synaptic plasticity was proven, including short-term synaptic plasticity (STSP) and long-term synaptic plasticity (LTSP). We also discuss the possibility of forming long-term memory in the device through changing input signals.

13.
J Colloid Interface Sci ; 606(Pt 2): 913-919, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34487938

ABSTRACT

With the development of mobile terminals, tunable capacitors for signal processing and memristors for calculation have received a lot of attention. Combining a tunable capacitor and a memristor can improve the performance of mobile terminals and reduce space requirements. In this article, we report on Bi2NiMnO6 (BNMO) films with high dielectric tuning and nonvolatile resistive switching (RS) effects. The BNMO films are fabricated by the sol-gel method and annealed at different temperatures. It exhibits a dielectric tunability of up to 92%. This high dielectric tunability may be attributed to the modulation of the interface dipole by the electric field. When an electric field is applied, the interface dipole of the BNMO film is far away from the interface of the BNMO, and then forms a conductive channel where anions and cations are mixed. The BNMO films are found to have a double-set type effect due to its dielectric tunability properties. This work introduces an ultra-high dielectric tuning material and a new type of RS effect on BNMO thin film, which can achieve tuning and memory behavior on a device.

14.
Nanomaterials (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615949

ABSTRACT

Resistive random-access memory (RRAM) is a promising candidate for next-generation non-volatile memory. However, due to the random formation and rupture of conductive filaments, RRMS still has disadvantages, such as small storage windows and poor stability. Therefore, the performance of RRAM can be improved by optimizing the formation and rupture of conductive filaments. In this study, a hafnium oxide-/aluminum-doped zinc oxide/hafnium oxide (HfO2/Al-ZnO/HfO2) tri-layer structure device was prepared using the sol-gel method. The oxygen-rich vacancy Al-ZnO layer was inserted into the HfO2 layers. The device had excellent RS properties, such as an excellent switch ratio of 104, retention of 104 s, and multi-level storage capability of six resistance states (one low-resistance state and five high-resistance states) and four resistance states (three low-resistance states and one high-resistance state) which were obtained by controlling stop voltage and compliance current, respectively. Mechanism analysis revealed that the device is dominated by ohmic conduction and space-charge-limited current (SCLC). We believe that the oxygen-rich vacancy concentration of the Al-ZnO insertion layer can improve the formation and rupture behaviors of conductive filaments, thereby enhancing the resistive switching (RS) performance of the device.

15.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685146

ABSTRACT

Herein, Bi4Ti3O12 (BIT) ferroelectric thin films were fabricated into Au/BIT/LaNiO3/Si structures to demonstrate their memristor properties. Repeatable and stable bipolar resistive switching (RS) characteristics of the device are first reported in this work. The switching ratio of the device annealed in air reached approximately 102 at 0.1 and -0.1 V. The RS performance was not significantly degraded after 100 consecutive cycles of testing. We also explored the factors affecting the RS behavior of the device. By investigating the RS characteristics of the devices annealed in O2, and in combination with XPS analysis, we found that the RS properties were closely related to the presence of oxygen vacancies. The devices annealed in air exhibited a markedly improved RS effect over those annealed in O2. According to the slope fitting, the conduction mechanism of the device was the ohmic conduction and space charge limited current (SCLC). This study is the first to successfully apply BIT ferroelectric films to the RS layers of memristors. Additionally, a theory of conductive filaments is proposed to adequately explain the relationship between RS behavior and oxygen vacancies, providing meaningful inspiration for designing high-quality resistive random access memory devices.

16.
ACS Appl Mater Interfaces ; 13(18): 21331-21337, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33929825

ABSTRACT

Extremely high temperature in a chip will severely affect the normal operation of electronic equipment; however, the traditional air conditioning cooling technology is unsuitable for integrated circuit cooling. It is necessary to develop convenient and high-efficiency cooling techniques. In this paper, PbHfO3 antiferroelectric (PHO AFE) film was fabricated by a sol-gel method and was first found to be a promising electrocaloric (EC) material with high temperature change (ΔT ∼ -7.7 K) and acceptable EC strength (|ΔT/ΔE| ∼ 0.023 K cm kV-1) at room temperature. In addition to the negative EC effect (ECE), a large positive ECE can be observed at high temperature. The outstanding ECEs and their combination will make the PHO film one of the potential candidates for next-generation solid-state refrigeration. To understand the underlying physical mechanism for positive and negative ECEs in the PHO AFE film, a modified Ginzburg-Landau-Devonshire free-energy theory is adopted.

17.
ACS Appl Mater Interfaces ; 12(48): 54168-54173, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33201657

ABSTRACT

As an important method to further improve the storage density of resistive memory, multistage resistive switching devices have become an important research direction. However, no stable and controllable multistage resistive switching device has been prepared, and the working mechanism is still unclear. Here, a sandwich-structured device is simply prepared by spin coating, with the work layer is the Bi2FeCrO6 thin film. The device can realize bidirectional controllable multistage resistive switching behavior, the biggest on/off ratio is 104, and it can maintain stability without attenuation at 100 times slow loop and 104 times pulse cycle. The analyzes showed that the charged ions formed by defects in the device migrated under the action of an external electric field lead to the Schottky barrier height reversible changed. Which is the key to cause multistage resistive switching behavior. This work is the first report about the voltage control of bidirectional adjustable multistage resistive switching behavior in the Bi2FeCrO6 thin film. The principle of generation is analyzed, and important ideas and insights are provided for the preparation and treatment of related multistage resistive problems.

18.
Nanomaterials (Basel) ; 9(12)2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31847505

ABSTRACT

Double perovskite Bi2NiMnO6 (BNMO) thin films grown on p-Si (100) substrates with LaNiO3 (LNO) buffer layers were fabricated using chemical solution deposition. The crystal structure, surface topography, surface chemical state, ferroelectric, and current-voltage characteristics of BNMO thin films were investigated. The results show that the nanocrystalline BNMO thin films on p-Si substrates without and with LNO buffer layer are monoclinic phase, which have antiferroelectric-like properties. The composition and chemical state of BNMO thin films were characterized by X-ray photoelectron spectroscopy. In the whole electrical property testing process, when the BNMO/p-Si heterojunction changed into a BNMO/LNO/p-Si heterojunction, the diode behavior of a single diode changing into two tail to tail diodes was observed. The conduction mechanism and temperature stability were also discussed.

19.
ACS Omega ; 4(11): 14650-14654, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31528821

ABSTRACT

A giant electrocaloric effect is reported in (Pb0.97La0.02)(Zr0.95Ti0.05)O3 anti-ferroelectric ceramics. These samples were fabricated by a solid-state mixed oxide technique. Dielectric analyses were employed to investigate the anti-ferroelectric (AFE) and ferroelectric (FE) phase transitions of the sample. During the heating process, the phase transition from the orthorhombic anti-ferroelectric phase (AFEO) to the tetragonal anti-ferroelectric phase (AFET) occurs at 155 °C, and the phase transition from AFET to PE occurs at 225 °C. Using the Maxwell relationship, the entropy change ΔS and adiabatic temperature change ΔT were obtained at different electric fields ranging from 40 to 65 kV/cm. The maximum adiabatic temperature change (ΔT max = -7.47 K) was obtained at 50 kV/cm, which was attributed to the field-induced phase transformation between the anti-ferroelectric and ferroelectric phases. These results showed that PLZT2/95/5 ceramics possess a large negative electrocaloric effect value, which could be applied in achieving cooling power as refrigerants.

20.
Nanomaterials (Basel) ; 9(8)2019 Aug 04.
Article in English | MEDLINE | ID: mdl-31382660

ABSTRACT

The resistive switching (RS) characteristics of flexible films deposited on mica substrates have rarely been reported upon, especially flexible HfO2 films. A novel flexible Au/HfO2/Pt/mica resistive random access memory device was prepared by a sol-gel process, and a Au/HfO2/Pt/Ti/SiO2/Si (100) device was also prepared for comparison. The HfO2 thin films were grown into the monoclinic phase by the proper annealing process at 700 °C, demonstrated by grazing-incidence X-ray diffraction patterns. The ratio of high/low resistance (off/on) reached 1000 and 50 for the two devices, respectively, being relatively stable for the former but not for the latter. The great difference in ratios for the two devices may have been caused by different concentrations of the oxygen defect obtained by the X-ray photoelectron spectroscopy spectra indicating composition and chemical state of the HfO2 thin films. The conduction mechanism was dominated by Ohm's law in the low resistance state, while in high resistance state, Ohmic conduction, space charge limited conduction (SCLC), and trap-filled SCLC conducted together.

SELECTION OF CITATIONS
SEARCH DETAIL
...