Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 445, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711039

ABSTRACT

BACKGROUND: Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS: We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS: This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.


Subject(s)
Lactation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle/genetics , Lactation/genetics , Female , RNA Splicing , Genome-Wide Association Study , Gene Expression Profiling , Introns , Transcriptome
2.
Anim Biosci ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38271969

ABSTRACT

Objective: RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modification-related genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. Methods: In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. Results: Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis (PCA) based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6A modification gene FTO showed significant effects on the expression of m6A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. Conclusion: RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.

3.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38266195

ABSTRACT

The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.


Subject(s)
Cattle , DNA Methylation , Goats , Sheep , Animals , Cattle/genetics , Dogs , Humans , Male , Mice , Genome-Wide Association Study , Goats/genetics , Multifactorial Inheritance , Sheep/genetics , Swine
4.
J Inflamm Res ; 16: 5163-5170, 2023.
Article in English | MEDLINE | ID: mdl-38026242

ABSTRACT

The ETV6::PDGFRB fusion gene is commonly reported in chronic myelomonocytic leukemia with eosinophilia, yet patients with ETV6::PDGFRB presenting myeloid and lymphoid neoplasms successively have not been reported. Here, we report the first case of a 35-year-old man with myeloid and lymphoid neoplasms harboring an ETV6::PDGFRB fusion gene who demonstrated poor response to imatinib. The patient was diagnosed with an ETV6::PDGFRB fusion gene myeloid neoplasm on initial diagnosis at our hospital. After 5 months of treatment with imatinib, he was diagnosed with T-cell lymphoblastic lymphoma. ETV6::PDGFRB turned negative after increasing the dose of imatinib, but enlarged superficial lymph nodes reappeared the following year. Notably, the patient exhibited a worse response to imatinib treatment. This study describes this rare case and speculates on a possible mechanism.

5.
Sensors (Basel) ; 23(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37960443

ABSTRACT

Although pressure pipelines serve as a secure and energy-efficient means of transporting oil, gas, and chemicals, they are susceptible to fatigue cracks over extended periods of cyclic loading due to the challenging operational conditions. Their quality and efficiency directly affect the safe operation of the project. Therefore, a thorough and precise characterization approach towards pressure pipelines can proactively mitigate safety risks and yield substantial economic and societal benefits. At present, the current mainstream 2D ultrasound imaging technology faces challenges in fully visualizing the internal defects and topography of pressure pipelines. Reverse time migration (RTM), widely employed in geophysical exploration, has the capability to visualize intricate geological structures. In this paper, we introduced the RTM into the realm of ultrasonic non-destructive testing, and proposed a 3D ultrasonic RTM imaging method for internal defects and sensor settings of pressure pipelines. To accurately simulate the extrapolation of wave field in 3D pressure pipelines, we set the absorbing boundary and double free boundary in cylindrical coordinates. Subsequently, using the 3D ultrasonic RTM approach, we attained higher-precision 3D imaging of internal defects in the pressure pipelines through suppressing imaging artifacts. By comparing and analyzing the imaging results of different sensor settings, the design of the observation system is optimized to provide a basis for the imaging and interpretation of actual data. Both simulations and actual field data demonstrate that our approach delivers top-notch 3D imaging of pipeline defects (with an imaging range accuracy up to 97.85%). This method takes into consideration the complexities of multiple scattering and mode conversions occurring at the base of the defects as well as the optimal sensor settings.

6.
Viruses ; 15(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37515234

ABSTRACT

Respiratory syncytial virus (RSV) infection can cause life-threatening pneumonia and bronchiolitis, posing a significant threat to human health worldwide, especially to children and the elderly. Currently, there is no specific treatment for RSV infection. The most effective measures for preventing RSV infection are vaccines and prophylactic medications. However, not all population groups are eligible for the approved vaccines or antibody-based preventive medications. Therefore, there is an urgent need to develop novel vaccines and prophylactic drugs available for people of all ages. High-throughput assays that evaluate the efficacy of viral entry inhibitors or vaccine-induced neutralizing antibodies in blocking RSV entry are crucial for evaluating vaccine and prophylactic drug candidates. We developed an efficient entry assay using a lentiviral pseudovirus carrying the fusion (F) protein of type A or B RSV. In addition, the essential parameters were systematically optimized, including the number of transfected plasmids, storage conditions of the pseudovirus, cell types, cell numbers, virus inoculum, and time point of detection. Furthermore, the convalescent sera exhibited comparable inhibitory activity in this assay as in the authentic RSV virus neutralization assay. We established a robust pseudovirus-based entry assay for RSV, which holds excellent promise for studying entry mechanisms, evaluating viral entry inhibitors, and assessing vaccine-elicited neutralizing antibodies against RSV.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Child , Humans , Aged , Antibodies, Viral , Viral Fusion Proteins/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Neutralizing
7.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37366074

ABSTRACT

Considering that artificial insemination is the most widely used assisted reproductive technique in the dairy industry, the semen quality of bulls is very important for selecting excellent stud bulls. Sperm motility is one of the important traits of semen quality, and related genes may be regulated by environmental factors. Seminal plasma can affect sperm cell transcriptome and further affect sperm motility through exosome or other processes. However, the molecular regulation mechanism of bull sperm motility has not been studied by combining the sperm cell transcriptome with seminal plasma metabolome. The number of motile sperm per ejaculate (NMSPE) is an integrated indicator for assessing sperm motility in stud bulls. In the present study, we selected 7 bulls with higher NMSPE (5,698.55 million +/- 945.40 million) as group H and 7 bulls with lower NMSPE (2,279.76 million +/- 1,305.69 million) as group L from 53 Holstein stud bulls. The differentially expressed genes (DEGs) in sperm cells were evaluated between the two groups (H vs. L). We conducted gene co-expression network analysis (WGCNA) on H and L groups of bulls, as well as two monozygotic twin Holstein bulls with different NMSPE values, to screen candidate genes for NMSPE. The regulatory effect of seminal plasma metabolome on the candidate genes of NMSPE was also investigated. A total of 1,099 DEGs were identified in the sperm cells of H and L groups. These DEGs were primarily concentrated in energy metabolism and sperm cell transcription. The significantly enriched Kyoto encyclopedia of genes and genomes (KEGG) pathways of the 57 differential metabolites were the aminoacyl-tRNA biosynthesis pathway and vitamin B6 metabolism pathway. Our study discovered 14 genes as the potential candidate markers for sperm motility, including FBXO39. We observed a broad correlation between transcriptome of sperm cells and seminal plasma metabolome, such as three metabolites, namely, mesaconic acid, 2-coumaric acid, and 4-formylaminoantipyrine, might regulate FBXO39 expression through potential pathways. The genes related to seminal plasma metabolites expressed in sperm cells are not only located near the quantitative trait loci of reproductive traits, but also enriched in the genome-wide association study signal of sire conception rate. Collectively, this study was the first to investigate the interplays among transcriptome of sperm cells and seminal plasma metabolome from Holstein stud bulls with different sperm motility.


A Holstein stud bull can produce thousands of doses of frozen semen, which are used to distribute its selected genetics to dairy herds all over the world. The semen quality of stud bulls has an impact on the economics of the breeding centers. Our previous study found that monozygotic twin stud bulls showed different semen quality traits and different transcriptomic profiles in sperm cells. The number of motile sperm per ejaculate (NMSPE) is an integrated trait for assessing sperm motility in stud bulls, which is one of the most important semen quality traits. In the present study, we selected 7 stud bulls that had a high NMSPE (named as H group) and 7 stud bulls with low NMSPE (named as L group) from a Chinese Holstein bull population based on 9 yr of semen quality records. In this study, we investigated the sperm cells transcriptomic differences between the two groups and observed the influences of seminal plasma metabolites on the transcriptomic profiles of the sperm cells. The results showed that the expression level of the differentially expressed genes in the sperm cells is closely related to NMSPE. Our study discovered 14 genes as the potential candidate markers for sperm motility, including FBXO39. Our data provide new insights into the improvement of bovine semen quality traits.


Subject(s)
Semen Analysis , Semen , Male , Cattle , Animals , Semen/physiology , Semen Analysis/veterinary , Sperm Motility/physiology , Genome-Wide Association Study/veterinary , Transcriptome , Spermatozoa/physiology , Metabolome
8.
Front Pediatr ; 11: 1062300, 2023.
Article in English | MEDLINE | ID: mdl-36937964

ABSTRACT

Background: Blood pressure variability (BPV) has been reported to be a predictor of cardiovascular and some cognitive diseases. However, the association between napping and BPV remains unknown. This study aimed to explore the association between napping and BPV. Materials and methods: A cross-sectional study including 105 university students was conducted. Participants' 24 h ambulatory blood pressure monitoring (24 h ABPM) were measured, and napping behaviors were investigated. BPV were measured by the 24 h ABPM, included standard deviation (SD), coefficient of variation (CV), and average real variability (ARV). Results: Among the participants, 61.9% reported daytime napping. We found that nap duration was significantly associated with daytime CV of diastolic blood pressure (DBP) (r = 0.250, P = 0.010), nighttime CV of systolic blood pressure (SBP) (r = 0.217, P = 0.026), 24 h WCV of DBP (r = 0.238, P = 0.014), 24 h ARV of SBP (r = 0.246, P = 0.011) and 24 h ARV of DBP (r = 0.291, P = 0.003). Compared with the no napping group, 24 h WCV of DBP, daytime CV of DBP, and daytime SD of DBP were significantly higher in participants with napping duration >60 min. With multiple regression analysis we found that nap duration was an independent predictor for 24 h ARV of SBP (ß = 0.859, 95% CI, 0.101-1.616, P = 0.027) and 24 h ARV of DBP (ß = 0.674, 95% CI, 0.173-1.175, P = 0.009). Conclusions: Napping durations are associated with BPV among university students. Especially those with napping durations >60 min had a significantly higher BPV than those non-nappers.

9.
Sci Bull (Beijing) ; 68(7): 713-722, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36934013

ABSTRACT

The glacial-interglacial variability of precipitation and its driving mechanism in monsoonal regions has long been a subject of debate. However, there are few records of quantitative climate reconstruction dating to the last glacial cycle in areas dominated by the Asian summer monsoon. Here, using a pollen-based quantitative climate reconstruction based on three sites in areas exposed to the Asian summer monsoon, we demonstrate that climate has undergone great variability over the past 68 ka. The differences between the last glacial and the Holocene optimum could have been as much as 35%-51% for precipitation, and 5-7 °C for mean annual temperature. Our findings also reveal regional heterogeneity during the abrupt climate events of Heinrich Event 1 and Younger Dryas, that drove drier conditions in southwestern China dominated by the Indian summer monsoon, and a wetter climate in central eastern China. The pattern of variation in reconstructed precipitation, exhibiting strong glacial-interglacial variability, is broadly consistent with the stalagmite δ18O records from Southwest China and South Asia. Our results of reconstruction quantify the sensitivity of the MIS3 precipitation to orbital insolation changes, and highlight the prominent influence of interhemispheric temperature gradients on Asian monsoon variability. Comparison with transient simulations and major climate forcings has shown that the mode of precipitation variability during the transition from the last glacial maximum to the Holocene has been significantly modulated by weak or collapsed Atlantic meridional overturning circulation events in addition to insolation forcing.

10.
Antiviral Res ; 209: 105509, 2023 01.
Article in English | MEDLINE | ID: mdl-36572190

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus , Amino Acid Sequence , Tubulin/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism
11.
BMC Biol ; 20(1): 273, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482458

ABSTRACT

BACKGROUND: Insights into the genetic basis of complex traits and disease in both human and livestock species have been achieved over the past decade through detection of genetic variants in genome-wide association studies (GWAS). A majority of such variants were found located in noncoding genomic regions, and though the involvement of numerous regulatory elements (REs) has been predicted across multiple tissues in domesticated animals, their evolutionary conservation and effects on complex traits have not been fully elucidated, particularly in ruminants. Here, we systematically analyzed 137 epigenomic and transcriptomic datasets of six mammals, including cattle, sheep, goats, pigs, mice, and humans, and then integrated them with large-scale GWAS of complex traits. RESULTS: Using 40 ChIP-seq datasets of H3K4me3 and H3K27ac, we detected 68,479, 58,562, 63,273, 97,244, 111,881, and 87,049 REs in the liver of cattle, sheep, goats, pigs, humans and mice, respectively. We then systematically characterized the dynamic functional landscapes of these REs by integrating multi-omics datasets, including gene expression, chromatin accessibility, and DNA methylation. We identified a core set (n = 6359) of ruminant-specific REs that are involved in liver development, metabolism, and immune processes. Genes with more complex cis-REs exhibited higher gene expression levels and stronger conservation across species. Furthermore, we integrated expression quantitative trait loci (eQTLs) and GWAS from 44 and 52 complex traits/diseases in cattle and humans, respectively. These results demonstrated that REs with different degrees of evolutionary conservation across species exhibited distinct enrichments for GWAS signals of complex traits. CONCLUSIONS: We systematically annotated genome-wide functional REs in liver across six mammals and demonstrated the evolution of REs and their associations with transcriptional output and conservation. Detecting lineage-specific REs allows us to decipher the evolutionary and genetic basis of complex phenotypes in livestock and humans, which may benefit the discovery of potential biomedical models for functional variants and genes of specific human diseases.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Cattle/genetics , Sheep/genetics , Animals , Swine , Mice , Epigenomics , Genomics , Multiomics , Mammals
12.
Front Genet ; 13: 949850, 2022.
Article in English | MEDLINE | ID: mdl-36204322

ABSTRACT

Subclinical bovine mastitis is a pathogenic infection of the breast characterized by a marked decrease in milk production and quality. As it has no obvious clinical symptoms, diagnosis and treatment are challenging. Therefore, searching for biomarkers in cows' peripheral white blood cells is valuable for preventing and treating subclinical mastitis. Thus, in this study, the transcriptome of peripheral blood from healthy and subclinical mastitis cows was characterized to find the regulatory signatures of bovine subclinical mastitis using RNA-seq. A total of 287 differentially expressed genes (DEGs) and 70 differentially expressed lncRNAs (DELs) were detected, and 37 DELs were documented near known Quantitative Trait Loci (QTL) associated with the mastitis of cows. Bioinformatic analysis indicated that lncRNAs MSTRG25101.2, MSTRG.56327.1, and MSTRG.18968.1, which are adjacent to the SCS QTL and SCC QTL, may be candidate lncRNAs that influence the pathogenesis of mastitis in cows by up-regulating the expression of genes TLR4, NOD2, CXCL8, and OAS2. Moreover, the alternative splicing (AS) pattern of transcriptional sequence differences between healthy cows and subclinical mastitis cows suggested a molecular mechanism of mastitis resistance and susceptibility. A total of 2,212 differential alternative splicing (DAS) events, corresponding to 1,621 unique DAS genes, were identified in both groups and significantly enriched in immune and inflammatory pathways. Of these, 29 DAS genes were subject to regulation by 32 alternative splicing SNPs, showing diverse and specific splicing patterns and events. It is hypothesized that the PIK3C2B and PPRPF8 splice variants associated with AS SNPs (rs42705933 and rs133847062) may be risk factors for susceptibility to bovine subclinical mastitis. Altogether, these key blood markers associated with resistance to subclinical mastitis and SNPs associated with alternative splicing of genes provide the basis for genetic breeding for resistance to subclinical mastitis in cows.

13.
Animals (Basel) ; 12(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35804592

ABSTRACT

Somatic cell count (SCC) is an important indicator of the health state of bovine udders. However, the exact cut-off value used for differentiating the cows with healthy quarters from the cows with subclinical mastitis remains controversial. Here, we collected composite milk (milk from four udder quarters) and peripheral blood samples from individual cows in two different dairy farms and used 16S rRNA gene sequencing combined with RNA-seq to explore the differences in the milk microbial composition and transcriptome of cows with three different SCC levels (LSCC: <100,000 cells/mL, MSCC: 100,000−200,000 cells/mL, HSCC: >200,000 cells/mL). Results showed that the milk microbial profiles and gene expression profiles of samples derived from cows in the MSCC group were indeed relatively easily discriminated from those from cows in the LSCC group. Discriminative analysis also uncovered some differentially abundant microbiota at the genus level, such as Bifidobacterium and Lachnospiraceae_AC2044_group, which were more abundant in milk samples from cows with SCC below 100,000 cells/mL. As for the transcriptome profiling, 79 differentially expressed genes (DEGs) were found to have the same direction of regulation in two sites, and functional analyses also showed that biological processes involved in inflammatory responses were more active in MSCC and HSCC cows. Overall, these results showed a similarity between the milk microbiota and gene expression profiles of MSCC and HSCC cows, which presented further evidence that 100,000 cells/ml is a more optimal cut-off value than 200,000 cells/mL for intramammary infection detection at the cow level.

14.
Viruses ; 14(5)2022 04 21.
Article in English | MEDLINE | ID: mdl-35632595

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially emerging variants, poses an increased threat to global public health. The significant reduction in neutralization activity against the variants such as B.1.351 in the serum of convalescent patients and vaccinated people calls for the design of new potent vaccines targeting the emerging variant. However, since most vaccines approved and in clinical trials are based on the sequence of the original SARS-CoV-2 strain, the immunogenicity and protective efficacy of vaccines based on the B.1.351 variant remain largely unknown. In this study, we evaluated the immunogenicity, induced neutralization activity, and protective efficacy of wild-type spike protein nanoparticle (S-2P) and mutant spike protein nanoparticle (S-4M-2P) carrying characteristic mutations of B.1.351 variant in mice. Although there was no significant difference in the induction of spike-specific IgG responses in S-2P- and S-4M-2P-immunized mice, neutralizing antibodies elicited by S-4M-2P exhibited noteworthy, narrower breadth of reactivity with SARS-CoV-2 variants compared with neutralizing antibodies elicited by S-2P. Furthermore, the decrease of induced neutralizing antibody breadth at least partly resulted from the amino acid substitution at position 484. Moreover, S-4M-2P vaccination conferred insufficient protection against live SARS-CoV-2 virus infection, while S-2P vaccination gave definite protection against SARS-CoV-2 challenge in mice. Together, our study provides direct evidence that the E484K substitution in a SARS-CoV-2 subunit protein vaccine limited the cross-reactive neutralizing antibody breadth in mice and, more importantly, draws attention to the unfavorable impact of this mutation in spike protein of SARS-CoV-2 variants on the induction of potent neutralizing antibody responses.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19 , Cross Reactions , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
15.
Anim Biosci ; 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35073659

ABSTRACT

OBJECTIVE: Abnormally increased somatic cell counts in milk is usually a sign of bovine subclinical mastitis. Mutual interaction between the host and its associated microbiota plays an important role in developing such diseases. The main objective of this study was to explore the difference between cows with elevated somatic cell counts and healthy cattle from the perspective of host-microbe interplay. METHODS: A total of 31 milk samples and 23 bovine peripheral blood samples were collected from Holstein dairy cattle to conduct an integrated analysis of transcriptomic and metagenomics. RESULTS: The results showed that Ralstonia and Sphingomonas were enriched in cows with subclinical mastitis. The relative abundance of the two bacteria was positively correlated with the expression level of bovine TCN1 (Transcobalamin 1 encoding gene) and UPP1 (uridine phosphorylase 1 encoding gene). Moreover, functional analysis revealed a distinct alternation in some important microbial biological processes. CONCLUSION: These results reveal the relative abundance of Ralstonia and Sphingomonas other than common mastitis-causing pathogens varied from healthy cows to those with subclinical mastitis and might be associated with elevated SCC. Potential association was observed between bovine milk microbiota composition and the transcriptional pattern of some genes, thus providing new insights to understand homeostasis of bovine udder.

16.
J Anim Sci Biotechnol ; 12(1): 120, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34895356

ABSTRACT

BACKGROUND: Staphylococcus aureus (S. aureus) mastitis is one of the most difficult diseases to treat in lactating dairy cows worldwide. S. aureus with different lineages leads to different host immune responses. Long non-coding RNAs (lncRNAs) are reported to be widely involved in the progress of inflammation. However, no research has identified stable lncRNAs among different S. aureus strain infections. In addition, folic acid (FA) can effectively reduce inflammation, and whether the inflammatory response caused by S. aureus can be reduced by FA remains to be explored. METHODS: lncRNA transcripts were identified from Holstein mammary gland tissues infected with different concentrations of S. aureus (in vivo) and mammary alveolar cells (Mac-T cells, in vitro) challenged with different S. aureus strains. Differentially expressed (DE) lncRNAs were evaluated, and stable DE lncRNAs were identified in vivo and in vitro. On the basis of the gene sequence conservation and function conservation across species, key lncRNAs with the function of potentially immune regulation were retained for further analysis. The function of FA on inflammation induced by S. aureus challenge was also investigated. Then, the association analysis between these keys lncRNA transcripts and hematological parameters (HPs) was carried out. Lastly, the knockdown and overexpression of the important lncRNA were performed to validate the gene function on the regulation of cell immune response. RESULTS: Linear regression analysis showed a significant correlation between the expression levels of lncRNA shared by mammary tissue and Mac-T cells (P < 0.001, R2 = 0.3517). lncRNAs PRANCR and TNK2-AS1 could be regarded as stable markers associated with bovine S. aureus mastitis. Several HPs could be influenced by SNPs around lncRNAs PRANCR and TNK2-AS1. The results of gene function validation showed PRANCR regulates the mRNA expression of SELPLG and ITGB2 within the S. aureus infection pathway and the Mac-T cells apoptosis. In addition, FA regulated the expression change of DE lncRNA involved in toxin metabolism and inflammation to fight against S. aureus infection. CONCLUSIONS: The remarkable association between SNPs around these two lncRNAs and partial HP indicates the potentially important role of PRANCR and TNK2-AS1 in immune regulation. Stable DE lncRNAs PRANCR and TNK2-AS1 can be regarded as potential targets for the prevention of bovine S. aureus mastitis. FA supplementation can reduce the negative effect of S. aureus challenge by regulating the expression of lncRNAs.

17.
Biology (Basel) ; 10(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34827157

ABSTRACT

Mastitis caused by Staphylococcus aureus (S. aureus) infection is one of the most difficult diseases to treat in dairy cattle. Exploring the biological progression of S. aureus mastitis via the interaction between host, pathogen, and environment is the key to an effective and sustainable improvement of animal health. Here, two strains of S. aureus and a strain of MRSA (Methicillin-resistant Staphylococcus aureus) isolated from cows with different inflammation phenotypes were used to challenge Mac-T cells and to investigate their effects on the global transcriptome of the cells, then to explore the potential regulatory mechanisms of folic acid on S. aureus mastitis prevention. Differential gene expression or splicing analysis showed that different strains of S. aureus led to distinct transcriptional responses from the host immune system. Folic acid could protect host defense against the challenge of S. aureus and MRSA partially through activating cytoplasmic DNA sensing and tight junction pathway. ZBP1 at the upstream of cytoplasmic DNA sensing pathway was verified and related to anti-pathogen through RNA interference. Further enrichment analysis using these transcriptome data with cattle large-scale genome-wide association study (GWAS) data confirmed that ZBP1 gene is highly associated with bovine somatic cell score (SCS) trait. Our data shed light on the potential effect of FA through regulating key gene and then protect host cells' defense against S. aureus and MRSA.

18.
Int J Syst Evol Microbiol ; 69(4): 1024-1029, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30714891

ABSTRACT

A novel Streptomyces strain, ZFG47T, isolated from a cadmium-contaminated soil sample, was taxonomically studied in detail. Strain ZFG47T formed long, flexuous spiral spore chains consisting of elliptoid spores with spiny surfaces. The cell-wall hydrolysates contained ll-diaminopimelic acid as the diagnostic diamino acid. The major menaquinones consisted of MK-9(H2), MK-9(H4) and MK-9(H8). The major polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol mannosides. The predominant cellular fatty acids were iso-C16 : 0, C16 : 0 and anteiso-C15 : 0. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus Streptomyces, showing the highest sequence similarity to Streptomyceskoyangensis VK-A60T (98.7 %). However, the digital DNA-DNA hybridization value, the average nucleotide identity value and the MLSA evolutionary distance between this strain and S. koyangensis VK-A60T showed that it belonged to a distinct species. Furthermore, the novel isolate could be distinctly differentiated from S. koyangensis VK-A60T by morphological, physiological and biochemical characteristics. On the basis of the evidence from this polyphasic study, it is concluded that strain ZFG47T represents a novel species of the genus Streptomyces, for which the name Streptomyces cadmiisoli sp. nov. is proposed, with strain ZFG47T (CICC 11050T=JCM 32897T) as the type strain.


Subject(s)
Cadmium , Phylogeny , Soil Microbiology , Soil Pollutants , Streptomyces/classification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomyces/isolation & purification , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...