Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 195: 343-358, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36587923

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a severe neurodegenerative disorder that progressively destroys cognitive skills. Exploring the mechanism underlying autophagic clearance of phosphorylated tau (p-Tau) contributes to developing novel therapeutic strategies for AD. METHODS: SH-SY5Y and HT22 cells were treated with Aß1-42 to establish an in vitro model of AD. Cell viability was examined using CCK-8. TUNEL staining was applied to evaluate cell apoptosis. LC3 puncta was examined by IF staining. m6A modification level was evaluated through MeRIP. RNA pull-down and RIP assays were used for analyzing the interaction between IGF2BP1 and STUB1 transcripts. The binding of KDM1A to the promoter of METTL3 was confirmed by ChIP assays. APP/PS1 transgenic mice were used as an in vivo model of AD. Cognitive skills of mice were evaluated with the Morris water maze. Hippocampal damage and Aß deposition were detected through H&E and IHC staining. RESULTS: Dysregulated levels of autophagy, p-Tau and m6A was observed in an in vitro model of AD. Overexpression of METTL3 or STUB1 enhanced autophagy but reduced p-Tau level in Aß1-42-treated cells. METTL3 stabilized STUB1 mRNA through the m6A-IGF2BP1-dependent mechanism and naturally promoted STUB1 expression, thereby enhancing autophagic p-Tau clearance in Aß1-42-treated cells. Overexpression of KDM1A enhanced autophagy, m6A modification and autophagic p-Tau clearance in Aß1-42-treated cells. KDM1A-mediated upregulation of METTL3 promoted autophagic p-Tau clearance and ameliorated Alzheimer's disease both in vitro and in vivo. CONCLUSION: KDM1A-mediated upregulation of METTL3 enhances autophagic clearance of p-Tau through m6A-dependent regulation of STUB1, thus ameliorating Alzheimer's disease. Our study provides novel mechanistic insights into AD pathogenesis and potential drug targets for AD.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Up-Regulation , Mice, Transgenic , Autophagy/genetics , Ubiquitin-Protein Ligases/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/therapeutic use , Histone Demethylases/genetics
2.
J Integr Neurosci ; 21(6): 152, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36424757

ABSTRACT

BACKGROUND: This study aimed to reveal the detailed immune-related mechanisms underlying ischemic stroke (IS) and identify new immune-associated biomarkers for clinical management. METHODS: Differentially expressed genes (DEGs) between IS samples and normal controls were identified using the GSE16561 dataset. The feature genes of the immune cells were investigated using the GSE72642 dataset. Weighted correlation network analysis (WGCNA) was performed to reveal module genes, followed by an investigation of common DEGs and a functional enrichment analysis. Potential biomarkers were identified based on hub genes in protein-protein interaction networks and WGCNA. Finally, GSE158312 was used for biomarker verification. RESULTS: In total, 1230 DEGs were identified between the IS samples and normal controls. Seven clinically significant modules were identified using WGCNA. The yellow module genes were positively correlated with polymorphonuclear cells (PMNC), whereas the brown module genes were positively correlated with CD4+ T cells. Eight genes were selected as hub genes. These genes are mainly involved in functions such as the innate immune response. Upregulated TLR2 and ARG1 levels were significantly different between the two groups in the verification dataset. CONCLUSIONS: Our findings suggest ARG1 and TLR2 as novel biomarkers for IS. Upregulated TLR2 might play a role in IS development by participating in the innate immune response function.


Subject(s)
Ischemic Stroke , Humans , Toll-Like Receptor 2 , Biomarkers , Protein Interaction Maps
3.
Acta Neurobiol Exp (Wars) ; 82(3): 358-372, 2022.
Article in English | MEDLINE | ID: mdl-36214718

ABSTRACT

Hypoxia inducible factor 1α (HIF­1α) has been reported to play a key role in protecting neurons from ischaemic injury. However, the exact molecular mechanisms remain largely unclear. PC12 cells were exposed to oxygen glucose deprivation/reoxygenation (OGD/R) conditions to mimic ischaemic injury in vitro. The expression of the HIF­1α mRNA, miR­20a­5p, and kinesin family member 5A (KIF5A) mRNA was tested using qRT-PCR. Levels of the HIF­1α, LC3I/II, P62, LAMP2, cathepsin B (CTSB) and KIF5A proteins were determined using western blotting. The CCK­8 assay was conducted to assess PC12 cell viability. DQ­Red­BSA and LysoSensor Green DND­189 dyes were employed to measure the proteolytic activity and pH of lysosomes, respectively. The interaction between miR­20a­5p and HIF­1α or KIF5A was verified by performing chromatin immunoprecipitation (ChIP) and/or dual­luciferase reporter assays. TUNEL staining was adopted to assess PC12 cell death. GFP­LC3 and RFP­GFP­LC3 probes were used to examine the autophagy status and autophagy flux of PC12 cells. A rat middle cerebral artery occlusion­reperfusion (MCAO/R) model was established to investigate the role of the HIF­1α/miR­20a­5p/KIF5A axis in ischaemic stroke in vivo. OGD/R exposure initiated PC12 cell autophagy and injury. HIF­1α expression was substantially increased in PC12 cells after OGD/R exposure. Overexpression of HIF­1α reversed the effects of OGD/R on reducing cell viability, blocking autophagy flux and inducing lysosome dysfunction. These rescue effects of HIF­1α depended on KIF5A. HIF­1α negatively regulated miR­20a­5p expression by targeting its promoter region, and miR­20a­5p directly targeted and negatively regulated the KIF5A mRNA. Overexpression of miR­20a­5p abolished the effects of HIF­1α on rescuing OGD/R­induced injury in PC12 cells. The effects of the HIF­1α/miR­20a­5p/KIF5A axis were verified in MCAO/R rats. HIF­1α protects PC12 cells from OGD/R­induced cell injury by regulating autophagy flux through the miR­20a­5p/KIF5A axis.


Subject(s)
Brain Ischemia , Hypoxia-Inducible Factor 1, alpha Subunit , Kinesins , MicroRNAs , Reperfusion Injury , Stroke , Animals , Apoptosis , Autophagy , Cathepsin B , Cell Survival , Glucose/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kinesins/genetics , MicroRNAs/genetics , Oxygen , PC12 Cells , RNA, Messenger , Rats , Reperfusion Injury/metabolism
4.
J Neurochem ; 163(6): 500-516, 2022 12.
Article in English | MEDLINE | ID: mdl-35997641

ABSTRACT

Ischemic stroke is a major global health issue. Ischemia and subsequent reperfusion results in stroke-related brain injury. Previous studies have demonstrated that nuclear-enriched abundant transcript 1 (NEATa and early growth response 1 (EGR1) are involved in ischemia reperfusion (IR) injury). In this study, we aimed to explore the roles of NEAT1/EGR1 axis as well as its downstream effector RNA binding motif protein 25 (RBM25) in cerebral IR injury. Oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO) were used to establish in vitro and in vivo models of cerebral IR injury, respectively. According to our data, NEAT1, EGR1, and RBM25 levels were elevated in OGD/R-exposed SK-N-SH and SH-SY5Y cells and cerebral cortex of MCAO mice. NEAT1, EGR1, or RBM25 knockdown effectively reduced infarct volumes and apoptosis, and improved neurological function. Mechanistically, NEAT1 directly interacted with EGR1, which restrained WW domain containing E3 ubiquitin protein ligase 1 (WWP1)-mediated ubiquitination of EGR1 and subsequently caused EGR1 accumulation. EGR1 bound to RBM25 promoter and transcriptionally activated RBM25. Rescue experiments indicated that RBM25 overexpression abolished the therapeutic effects of NEAT1 knockdown. In conclusion, this work identified a novel NEAT1/EGR1/RBM25 axis in potentiating brain injury after IR insults, suggesting a potential therapeutic target for ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , MicroRNAs , Neuroblastoma , RNA, Long Noncoding , Reperfusion Injury , Humans , Mice , Animals , RNA, Long Noncoding/genetics , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery , Oxygen/metabolism , Apoptosis/genetics , Glucose/metabolism , RNA-Binding Motifs , Brain Ischemia/metabolism , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism
5.
Front Pharmacol ; 13: 834948, 2022.
Article in English | MEDLINE | ID: mdl-35685645

ABSTRACT

Background: Ischemic stroke is the most common stroke incident. Sphingosine-1-phosphate (S1P) receptor 3 (S1PR3) is a member of the downstream G protein-coupled receptor family of S1P. The effect of S1PR3 on ischemic stroke remains elusive. Methods: We downloaded two middle cerebral artery occlusion (MCAO) microarray datasets from the Gene Expression Omnibus (GEO) database and screened differentially expressed genes (DEGs). Then, we performed a weighted gene coexpression network analysis (WGCNA) and identified the core module genes related to ischemic stroke. We constructed a protein-protein interaction (PPI) network for the core genes in which DEGs and WGCNA intersected. Finally, we discovered that S1PR3 was involved as the main member of the red proteome. Then, we explored the mechanism of S1PR3 in the mouse tMCAO model. The S1PR3-specific inhibitor CAY10444 was injected into the abdominal cavity of mice after cerebral ischemia/reperfusion (I/R) injury, and changes in the expression of blood-brain barrier-related molecules were measured using PCR, western blotting, and immunofluorescence staining. Results: Both GEO datasets showed that S1PR3 was upregulated during cerebral I/R in mice. WGCNA revealed that the light yellow module had the strongest correlation with the occurrence of IS. We determined the overlap with DEGs, identified 146 core genes that are potentially related to IS, and constructed a PPI network. Finally, S1PR3 was found to be the main member of the red proteome. In the mouse cerebral I/R model, S1PR3 expression increased 24 h after ischemia. After the administration of CAY10444, brain edema and neurological deficits in mice were ameliorated. CAY10444 rescued the decreased expression of the tight junction (TJ) proteins zonula occludens 1 (ZO1) and occludin after ischemia induced by transient MCAO (tMCAO) and reduced the increase in aquaporin 4 (AQP4) levels after tMCAO, preserving the integrity of the BBB. Finally, we found that S1PR3 is involved in regulating the mitogen-activated protein kinase (MAPK) and (phosphatidylinositol-3 kinase/serine-threonine kinase) PI3K-Akt signaling pathways. Conclusion: S1PR3 participates in the regulation of blood-brain barrier damage after cerebral I/R. S1PR3 is expected to be an indicator and predictor of cerebral ischemia, and drugs targeting S1PR3 may also provide new ideas for clinical medications.

6.
Front Neurosci ; 16: 838621, 2022.
Article in English | MEDLINE | ID: mdl-35242008

ABSTRACT

BACKGROUND: Ischemic stroke (IS) is a common disease endangering human life and health. Cerebral ischemia triggers a series of complex harmful events, including excitotoxicity, inflammation and cell death, as well as increased nitric oxide production through the activation of nitric oxide synthase (NOS). Oxidative stress plays a major role in cerebral ischemia and reperfusion. Sphingosine 1-phosphate receptor subtype 3 (S1PR3), a member of S1P's G protein-coupled receptors S1PR1-S1PR5, is involved in a variety of biological effects in the body, and its role in regulating oxidative stress during cerebral ischemia and reperfusion is still unclear. METHODS: Transient middle cerebral artery occlusion (tMCAO) mice were selected as the brain ischemia-reperfusion (I/R) injury model. Male C57/BL6 mice were treated with or without a selective S1PR3 inhibition after tMCAO, and changes in infarct volume, Nissl staining, hematoxylin-eosin (H&E) staining and NOS protein, nitric oxide (NO), superoxide dismutase (SOD), and malondialdehyde (MDA) content after tMCAO were observed. RESULTS: In the cerebral ischemia-reperfusion model, inhibition of S1PR3 improved the infarct volume and neuronal damage in mice after tMCAO. Similarly, inhibition of S1PR3 can reduce the expression of NO synthase subtype neuronal NOS (nNOS) and reduce the production of NO after cerebral ischemia. After cerebral ischemia and reperfusion, the oxidative stress response was enhanced, and after the administration of the S1PR3 inhibitor, the SOD content increased and the MDA content decreased, indicating that S1PR3 plays an important role in regulating oxidative stress response. CONCLUSION: Inhibiting S1PR3 attenuates brain damage during I/R injury by regulating nNOS/NO and oxidative stress, which provides a potential new therapeutic target and mechanism for the clinical treatment of IS.

7.
Brain Res ; 1785: 147884, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35304105

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a major neurodegenerative disorder. The functions of lncRNA RMRP have been characterized mainly in various human cancers. However, the functional network of RMRP in AD progression remains unknown. METHODS: Human serum samples, AD transgenic (Tg) mice as well as SH-SY5Y cells were used in this study. The RNA expression patterns of RMRP, miR-3142 and TRIB3 were assessed by quantitative real-time PCR (qRT-PCR). Levels of apoptosis- or autophagy-associated biomarkers and TRIB3 level were evaluated using immunohistochemistry (IHC), western blotting or immunofluorescence assays, respectively. Bioinformatics methods and luciferase assays were used to predict and validate the interactions among RMRP, miR-3142, and TRIB3. Flow cytometry, TUNEL staining and EdU assays were used to examine the apoptosis and proliferation of neurons, respectively. RESULTS: The elevated RMRP and TRIB3 expressions and activation of autophagy were observed in AD. Knockdown of RMRP restrained neuronal apoptosis and autophagy activation in vitro and in vivo. Interestingly, TRIB3 overexpression reversed the biological effects of RMRP silencing on Aß1-42-induced cell apoptosis and autophagy. Further mechanistic analysis showed RMRP acted as a sponge of miR-3142 to elevate TRIB3 level. CONCLUSION: These data illustrated that knockdown of RMRP inhibited autophagy and apoptosis via regulating miR-3142/TRIB3 axis in AD, suggesting that inhibition of RMRP maybe a therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , MicroRNAs , RNA, Long Noncoding , Alzheimer Disease/genetics , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Mice , MicroRNAs/metabolism , Neurons/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
9.
Front Immunol ; 12: 753929, 2021.
Article in English | MEDLINE | ID: mdl-34950135

ABSTRACT

Background: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoimmunity. No objective clinical indicators are available for the diagnosis and prognosis of MS. Extracellular proteins are most glycosylated and likely to enter into the body fluid to serve as potential biomarkers. Our work will contribute to the in-depth study of the functions of extracellular proteins and the discovery of disease biomarkers. Methods: MS expression profiling data of the human brain was downloaded from the Gene Expression Omnibus (GEO). Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases. GO and KEGG were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the CSF of MS patients. ROC curve and survival analysis were used to evaluate the diagnostic and prognostic ability of key EP-DEGs. Results: We screened 133 EP-DEGs from DEGs. EP-DEGs were enriched in the collagen-containing extracellular matrix, signaling receptor activator activity, immune-related pathways, and PI3K-Akt signaling pathway. The PPI network of EP-DEGs had 85 nodes and 185 edges. We identified 4 key extracellular proteins IL17A, IL2, CD44, IGF1, and 16 extracellular proteins that interacted with IL17A. We clinically verified that IL17A levels decreased, but Del-1 and resolvinD1 levels increased. The diagnostic accuracy of Del-1 (AUC: 0.947) was superior to that of IgG (AUC: 0.740) with a sensitivity of 82.4% and a specificity of 100%. High Del-1 levels were significantly associated with better relapse-free and progression-free survival. Conclusion: IL17A, IL2, CD44, and IGF1 may be key extracellular proteins in the pathogenesis of MS. IL17A, Del-1, and resolvinD1 may co-regulate the development of MS and Del-1 is a potential biomarker of MS. We used bioinformatics methods to explore the biomarkers of MS and validated the results in clinical samples. The study provides a theoretical and experimental basis for revealing the pathogenesis of MS and improving the diagnosis and prognosis of MS.


Subject(s)
Extracellular Fluid/chemistry , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Proteins/analysis , Adult , Biomarkers , Brain Chemistry , Calcium-Binding Proteins/analysis , Calcium-Binding Proteins/physiology , Cell Adhesion Molecules/analysis , Cell Adhesion Molecules/physiology , Cerebrospinal Fluid Proteins/analysis , Cerebrospinal Fluid Proteins/genetics , Datasets as Topic , Disease-Free Survival , Female , Gene Expression Profiling , Gene Ontology , Headache/genetics , Headache/metabolism , Humans , Interleukin-17/analysis , Interleukin-17/physiology , Male , Middle Aged , Molecular Sequence Annotation , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/metabolism , Progression-Free Survival , Protein Array Analysis , Protein Interaction Maps , Proteins/genetics , Sensitivity and Specificity
10.
Aging (Albany NY) ; 12(24): 25020-25034, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33203798

ABSTRACT

The pseudokinase Tribble 3 (TRIB3) is known as a regulator in cellular responses to a variety of stresses, such as glucose insufficiency and endoplasmic reticulum (ER) stress. TRIB3 is upregulated in various cancer tissues and is closely connected to the poor prognosis of patients. However, the underlying regulation and function of TRIB3 in glioblastoma (GBM) is still largely unknown. In this study, the upregulation of TRIB3 was confirmed both in primary specimens from GBM patients and in vitro with GBM cell lines. Overexpression of specific TRIB3 transcripts promoted cell growth and migration in vitro, while knockdown of TRIB3 expression exerted a repressive effect on these cellular processes. The growth-promoting effect of TRIB3 was also demonstrated in a xenograft mouse model. Mechanistic studies further revealed that TRIB3 was able to suppress autophagic flux and that this suppression was responsible for TRIB3 silencing-induced proliferation and migration of GBM cells. These findings indicate that the suppression of autophagic flux by TRIB3 drives the invasion and proliferation of GBM cells, thus suggesting that TRIB3 is a potential novel therapeutic target for the treatment of glioma.


Subject(s)
Autophagy/genetics , Brain Neoplasms/genetics , Cell Cycle Proteins/genetics , Glioblastoma/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins/genetics , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Knockdown Techniques , Glioblastoma/pathology , Humans , Lung , Mice , Mice, Nude , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Transplantation , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/metabolism
11.
Cancer Cell Int ; 20: 327, 2020.
Article in English | MEDLINE | ID: mdl-32699526

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) has been extensively reported play important roles in regulating the development and progression of cancers, including Glioblastoma (GBM). LINC01426 is a novel lncRNA that has been identified as an oncogenic gene in GBM. Herein, we attempted to elucidate the detailed functions and underlying mechanisms of LINC01426 in GBM. METHODS: LINC01426 expression in GBM cell lines and tissues were detected by quantitative real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK8) assays, colony formation assays, subcutaneous tumor formation assays were utilized to investigate the biological functions of LINC01426 in GBM. Dual-luciferase reporter assays, RNA immunoprecipitation (RIP) and bioinformatic analysis were performed to determine the underlying mechanisms. RESULTS: LINC01426 is up-regulated in malignant GBM tissues and cell lines and it is capable to promote GBM cell proliferation and growth. Mechanistically, LINC01426 serves as a molecular sponge to sequester the miR345-3p and thus enhancing the level of VAMP8, an oncogenic coding gene, to promote GBM progression. CONCLUSIONS: Our results revealed the detailed mechanisms of LINC01426 facilitated cell proliferation and growth in GBM and report the clinical value of LINC01426 for GBM prognosis and treatment.

12.
Life Sci ; 239: 117036, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31697951

ABSTRACT

AIMS: Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury. Sirtuin3(SIRT3), as one member of the sirtuin family, protects against oxidative stress-related diseases. However, the association between melatonin and SIRT3 in cerebral I/R injury is not well understood. Our experiment was planned to investigate whether melatonin protects against cerebral I/R injury through SIRT3 activation. MAIN METHODS: We selected transient middle cerebral artery occlusion (tMCAO) mice as the model of cerebral I/R injury. Male C57/BL6 mice were pre-treated with or without a selective SIRT3 inhibitor and then subjected to tMCAO surgery. Melatonin (20 mg/kg) was given to mice by intraperitoneal injection after ischemia and before reperfusion. Then, we observed the changes in the SIRT3 and downstream relative proteins, infarction volume, neurological score, Nissl, H&E and TUNEL staining, and the expression of apoptosis proteins after tMCAO. KEY FINDINGS: Melatonin upregulated the expression of SIRT3 after tMCAO, and alleviated the neurological dysfunction and cell apoptosis through SIRT3 activation. SIGNIFICANCE: Our research proved that melatonin promoted SIRT3 expression after tMCAO and alleviated cerebral I/R injury by activating the SIRT3 signaling pathway. This study provides novel therapeutic targets and mechanisms for the treatment of ischemic stroke in the clinic, especially during cerebrovascular reperfusion.


Subject(s)
Melatonin/pharmacology , Reperfusion Injury/metabolism , Sirtuin 3/metabolism , Animals , Apoptosis/drug effects , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Male , Melatonin/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Sirtuin 3/physiology , Stroke/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...