Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
2.
Ying Yong Sheng Tai Xue Bao ; 22(9): 2316-24, 2011 Sep.
Article in Chinese | MEDLINE | ID: mdl-22126042

ABSTRACT

Arbuscular mycorrhiza (AM) can not only improve host plants nutrient absorption, but also enhance their disease resistance. Taking the tomato (Lycopersicon esculentum) seedlings preinoculated with axbuscular mycorrhizal fungus (AMF) Glomus versiforme as test materials, this paper studied their protective enzyme activities and defense-related genes expression, and their resistance against a fungal pathogen Alternaria solani Sorauer which causes early blight. The seedlings pre-inoculated with AMF and later inoculated with A. solani showed significantly higher activities of superoxide dismutase (SOD) and peroxidase (POD) in leaves. The leaf SOD activity of the dually inoculated plants reached the maximum 18 h after pathogen inoculation, being 28.6%, 79.2% and 82.8% higher than that of the plants with G. versiforme inoculation alone, pathogen inoculation alone, and non-inoculation, and the Leaf POD activity reached the maximum 65 h after pathogen inoculation, being 762%, 18.3%, and 1710% higher, respectively. Real time RT-PCR analysis showed that dual inoculation with C. versiforme and A. solani strongly induced the expression of three defense-related genes. The transcript levels of pathogen-related protein (PR1), basic type beta-1,3-glucanase (PR-2), and chitinase (PR-3) in leaves were 9.67-, 8.54-, and 13.4-fold higher, as compared with the non-inoculation control, respectively. Bioassay showed that the disease incidence and disease index of the seedlings pre-inoculated with C. versiforme were reduced by 36.3% and 61.4%, respectively, as compared with the non-mycorrhizal control plants. These findings indicated that mycorrhizal colonization could induce stronger and quicker defense responses of host tomato plants, and priming could be an important mechanism of the enhanced disease resistance of mycorrhizal tomato plants.


Subject(s)
Disease Resistance , Mycorrhizae/physiology , Plant Diseases/prevention & control , Solanum lycopersicum/microbiology , Alternaria/pathogenicity , Glomeromycota/physiology , Solanum lycopersicum/growth & development , Plant Diseases/microbiology , Seedlings/growth & development , Seedlings/microbiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...