Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Reprod Biol ; 24(2): 100882, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604016

ABSTRACT

This study aims to elucidate the effects of Platelet-rich plasma (PRP) in fibrosis development in intrauterine adhesion (IUA), and the associated underlying mechanisms are also explored, which are expected to be a potential therapeutic scheme for IUA. In this research, PRP was obtained and prepared from the peripheral venous blood of rats. A rat model was induced by mechanical injury. Further, PRP was directly injected into the uterus for treatment. The appearance and shape of the uterus were assessed based on the tissues harvested. The fibrosis biomarker levels were analyzed. The transforming growth factor beta 1 (TGF-ß1) and Mothers against decapentaplegic homolog 7 (Smad7) levels, the phosphorylation of Smad2 (p-Smad2), and the phosphorylation of Smad3 (p-Smad3) were analyzed, and the molecular mechanism was investigated by rescue experiments. It was found that PRP improved the appearance and shape of the uterus in IUA and increased endometrial thickness and gland numbers. The administration of PRP resulted in a decrease in the expressions of fibrosis markers including collagen I, α-SMA, and fibronectin. Furthermore, PRP increased Smad7 levels and decreased TGF-ß1 levels, p-Smad2, and p-Smad3. Meanwhile, administration of TGF-ß1 activator reversed the therapeutic effects of PRP in IUA. Collectively, the intrauterine infusion of PRP can promote endometrial damage recovery and improve endometrial fibrosis via the TGF-ß1/Smad pathway. Hence, PRP can be a potential therapeutic strategy for IUA.

2.
Curr Med Chem ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38549537

ABSTRACT

The proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs to a member of the proprotein convertase (PC) family, which is mainly secreted by the liver and plays a central role in lipid metabolism. Furthermore, PCSK9 plays a multifunctional role in promoting the inflammatory response, inducing cell apoptosis and pyroptosis and affecting tumor homeostasis. The brain is the organ with the richest lipid content. Incidentally, PCSK9 increased in many brain diseases, including brain injury and Alzheimer's disease (AD). Consequently, the relationship between PCSK9 and brain diseases has attracted increasing research interest. Amyloid beta (Aß) accumulation is the central and initial event in the pathogenesis of AD. This study focuses on the effects of PCSK9 on Aß accumulation in the brain via multiple modalities to explore the potential role of PCSK9 in AD, which is characterized by progressive loss of brain cells by increasing Aß accumulation. The study also explores the new mechanism by which PCSK9 is involved in the pathogenesis of AD, providing interesting and innovative guidance for the future of PCSK9-targeted therapy for AD.

3.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38049061

ABSTRACT

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Subject(s)
Atherosclerosis , Hydrogen Sulfide , Mice , Animals , Humans , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Endothelial-Mesenchymal Transition , Atherosclerosis/genetics , Atherosclerosis/metabolism , Endothelium/metabolism , DNA/metabolism , Apolipoproteins E/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition
4.
Cell Death Dis ; 14(11): 723, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935689

ABSTRACT

Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Proprotein Convertase 9 , Humans , Mice , Animals , Male , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PQQ Cofactor/pharmacology , Mice, Obese , Leydig Cells/metabolism , Pyroptosis , Obesity/metabolism , Inflammation
5.
Curr Med Chem ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550912

ABSTRACT

Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.

6.
Mol Biomed ; 4(1): 21, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37442861

ABSTRACT

Atherosclerosis (AS) is a major contributor to morbidity and mortality worldwide. However, the molecular mechanisms and mediator molecules involved remain largely unknown. Copper, which plays an essential role in cardiovascular disease, has been suggested as a potential risk factor. Copper homeostasis is closely related to the occurrence and development of AS. Recently, a new cell death pathway called cuproptosis has been discovered, which is driven by intracellular copper excess. However, no previous studies have reported a relationship between cuproptosis and AS. In this study, we integrated bulk and single-cell sequencing data to screen and identify key cuproptosis-related genes in AS. We used correlation analysis, enrichment analysis, random forest, and other bioinformatics methods to reveal their relationships. Our findings report, for the first time, the involvement of cuproptosis-related genes FDX1, SLC31A1, and GLS in atherogenesis. FDX1 and SLC31A1 were upregulated, while GLS was downregulated in atherosclerotic plaque. Receiver operating characteristic curves demonstrate their potential diagnostic value for AS. Additionally, we confirm that GLS is mainly expressed in vascular smooth muscle cells, and SLC31A1 is mainly localized in macrophages of atherosclerotic lesions in experiments. These findings shed light on the cuproptosis landscape and potential diagnostic biomarkers for AS, providing further evidence about the vital role of cuproptosis in atherosclerosis progression.

7.
Exp Cell Res ; 429(2): 113666, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37271250

ABSTRACT

TM6SF2, predominantly expressed in the liver and intestine, is closely associated with lipid metabolism. We have demonstrated the presence of TM6SF2 in VSMCs within human atherosclerotic plaques. Subsequent functional studies were conducted to investigate its role in lipid uptake and accumulation in human vascular smooth muscle cells (HAVSMCs) using siRNA knockdown and overexpression techniques. Our results showed that TM6SF2 reduced lipid accumulation in oxLDL-stimulated VSMCs, likely through the regulation of lectin-like oxLDL receptor 1 (LOX-1) and scavenger receptor cluster of differentiation 36 (CD36) expression. We concluded that TM6SF2 plays a role in HAVSMC lipid metabolism with opposing effects on cellular lipid droplet content by downregulation of LOX-1 and CD36 expression.


Subject(s)
Muscle, Smooth, Vascular , Scavenger Receptors, Class E , Humans , Muscle, Smooth, Vascular/metabolism , Scavenger Receptors, Class E/genetics , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Myocytes, Smooth Muscle/metabolism , Down-Regulation , Liver/metabolism , Membrane Proteins/metabolism
8.
Curr Med Chem ; 30(38): 4340-4354, 2023.
Article in English | MEDLINE | ID: mdl-36635933

ABSTRACT

Long non-coding RNA (lncRNA) is a kind of biomolecule that can regulate important life activities such as cell proliferation, apoptosis, differentiation, aging, and body development. It has been found that lncRNAs are closely related to various diseases. In cardiovascular diseases, lncRNAs affect the expression level of related genes in atherosclerotic plaques, which are closely related to endothelial dysfunction, smooth muscle cell proliferation, macrophage dysfunction, abnormal lipid metabolism, and cellular autophagy, thus participating in regulating the occurrence and development of AS. In view of this, investigating the role of lncRNAs in regulating cardiac gene networks on cardiovascular system diseases has attracted much clinical attention and may be a novel target for AS therapy. This paper focuses on lncRNAs related to AS, explores the relationship between lncRNAs and AS, suggests the role of lncRNAs in the prevention and treatment of AS, and expects the application of more lncRNAs as the marker in the clinical diagnosis and treatment of AS.


Subject(s)
Atherosclerosis , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cell Differentiation
9.
Nutr Metab (Lond) ; 19(1): 20, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303905

ABSTRACT

BACKGROUND: This meta-analysis was performed to investigate the effects of nicotinamide adenine dinucleotide (NAD+) precursor supplementation on glucose and lipid metabolism in human body. METHODS: PubMed, Embase, CENTRAL, Web of Science, Scopus databases were searched to collect clinical studies related to the supplement of NAD+ precursor from inception to February 2021. Then the retrieved documents were screened, the content of the documents that met the requirements was extracted. Meta-analysis and quality evaluation was performed detection were performed using RevMan5.4 software. Stata16 software was used to detect publication bias, Egger and Begg methods were mainly used. The main research terms of NAD+ precursors were Nicotinamide Riboside (NR), Nicotinamide Mononucleotide (NMN), Nicotinic Acid (NA), Nicotinamide (NAM). The changes in the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and fasting blood glucose were mainly concerned. RESULTS: A total of 40 articles were included in the meta-analysis, with a sample of 14,750 cases, including 7406 cases in the drug group and 7344 cases in the control group. The results of meta-analysis showed that: NAD+ precursor can significantly reduce TG level (SMD = - 0.35, 95% CI (- 0.52, - 0.18), P < 0.0001), and TC (SMD = - 0.33, 95% CI (- 0.51, - 0.14), P = 0.0005), and LDL (SMD = - 0.38, 95% CI (- 0.50, - 0.27), P < 0.00001), increase HDL level (SMD = 0.66, 95% CI (0.56, 0.76), P < 0.00001), and plasma glucose level in the patients (SMD = 0.27, 95% CI (0.12, 0.42), P = 0.0004). Subgroup analysis showed that supplementation of NA had the most significant effect on the levels of TG, TC, LDL, HDL and plasma glucose. CONCLUSIONS: In this study, a meta-analysis based on currently published clinical trials with NAD+ precursors showed that supplementation with NAD+ precursors improved TG, TC, LDL, and HDL levels in humans, but resulted in hyperglycemia, compared with placebo or no treatment. Among them, NA has the most significant effect on improving lipid metabolism. In addition, although NR and NAM supplementation had no significant effect on improving human lipid metabolism, the role of NR and NAM could not be directly denied due to the few relevant studies at present. Based on subgroup analysis, we found that the supplement of NAD+ precursors seems to have little effect on healthy people, but it has a significant beneficial effect on patients with cardiovascular disease and dyslipidemia. Due to the limitation of the number and quality of included studies, the above conclusions need to be verified by more high-quality studies.

10.
Reprod Biol Endocrinol ; 20(1): 45, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255928

ABSTRACT

Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What's more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.


Subject(s)
Diabetes Mellitus, Experimental , Glycolysis/drug effects , Infertility, Male , Spermatogenesis/drug effects , Spermidine/pharmacology , Animals , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Diabetes Complications/pathology , Diabetes Complications/physiopathology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Infertility, Male/drug therapy , Infertility, Male/etiology , Infertility, Male/metabolism , Male , Mice , Mice, Inbred C57BL , Semen Analysis , Spermatogenesis/physiology , Spermidine/therapeutic use , Streptozocin , Testis/drug effects , Testis/metabolism
11.
J Cardiovasc Transl Res ; 15(3): 477-491, 2022 06.
Article in English | MEDLINE | ID: mdl-35233720

ABSTRACT

Atherosclerosis (AS) is a complex chronic inflammatory disease that leads to myocardial infarction, stroke, and disabling peripheral artery disease. Non-coding RNAs (ncRNAs) directly participate in various physiological processes and exhibit a wide range of biological functions. The present review discusses how different ncRNAs participate in the process of AS in various carrier forms. We focused on the role and potential mechanisms of extracellular ncRNAs in AS and examined their potential implications for clinical treatment.


Subject(s)
Atherosclerosis , Myocardial Infarction , Stroke , Atherosclerosis/genetics , Humans , RNA, Untranslated/genetics
12.
Arterioscler Thromb Vasc Biol ; 42(1): 67-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34809446

ABSTRACT

OBJECTIVE: PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS: Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.


Subject(s)
Apoptosis , Atherosclerosis/enzymology , Cell Proliferation , Cellular Senescence , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Proprotein Convertase 9/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Neointima , Plaque, Atherosclerotic , Proprotein Convertase 9/genetics , Signal Transduction , Vascular Stiffness
13.
Front Pharmacol ; 12: 690371, 2021.
Article in English | MEDLINE | ID: mdl-34950023

ABSTRACT

Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-ß-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.

14.
Mol Med Rep ; 23(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760156

ABSTRACT

Hydrogen sulfide (H2S) exerts an anti­atherosclerotic effect and decreases foam cell formation. Lipoprotein­associated phospholipase A2 (Lp­PLA2) is a key factor involved in foam cell formation. However, the association between H2S and Lp­PLA2 expression levels with respect to foam cell formation has not yet been elucidated. The present study investigated whether H2S can affect foam cell formation and potential signalling pathways via regulation of the expression and activity of Lp­PLA2. Using human monocytic THP­1 cells as a model system, it was observed that oxidized low­density lipoprotein (ox­LDL) not only upregulates the expression level and activity of Lp­PLA2, it also downregulates the expression level and activity of Cystathionine γ lyase. Exogenous supplementation of H2S decreased the expression and activity of Lp­PLA2 induced by ox­LDL. Moreover, ox­LDL induced the expression level and activity of Lp­PLA2 via activation of the p38MAPK signalling pathway. H2S blocked the expression levels and activity of Lp­PLA2 induced by ox­LDL via inhibition of the p38MAPK signalling pathway. Furthermore, H2S inhibited Lp­PLA2 activity by blocking the p38MAPK signaling pathway and significantly decreased lipid accumulation in ox­LDL­induced macrophages, as detected by Oil Red O staining. The results of the present study indicated that H2S inhibited ox­LDL­induced Lp­PLA2 expression levels and activity by blocking the p38MAPK signalling pathway, thereby improving foam cell formation. These findings may provide novel insights into the role of H2S intervention in the progression of atherosclerosis.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Cystathionine gamma-Lyase/genetics , Hydrogen Sulfide/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Foam Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Hydrogen Sulfide/metabolism , Lipoproteins, LDL/genetics , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Macrophages/drug effects , Monocytes/drug effects , Monocytes/metabolism , Signal Transduction/drug effects
15.
Eur J Pharmacol ; 896: 173916, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33529724

ABSTRACT

Cardiovascular diseases are the leading cause of death and morbidity worldwide. Atherosclerotic cardiovascular disease (ASCVD) is affected by both environmental and genetic factors. Microenvironmental disorders of the human gut flora are associated with a variety of health problems, not only gastrointestinal diseases, such as inflammatory bowel disease, but also extralintestinal organs. Hydrogen sulfide (H2S) is the third gas signaling molecule other than nitric oxide and carbon monoxide. In the cardiovascular system, H2S plays important roles in the regulation of blood pressure, angiogenesis, smooth muscle cell proliferation and apoptosis, anti-oxidative stress, cardiac functions. This review is aiming to explore the potential role of gut microbiota in the development of atherosclerosis through hydrogen sulfide production as a novel therapeutic direction for atherosclerosis.


Subject(s)
Arteries/metabolism , Atherosclerosis/microbiology , Bacteria/metabolism , Gasotransmitters/metabolism , Gastrointestinal Microbiome , Hydrogen Sulfide/metabolism , Intestines/microbiology , Animals , Arteries/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/therapy , Humans , Plaque, Atherosclerotic , Signal Transduction
16.
Curr Med Chem ; 28(1): 152-168, 2021.
Article in English | MEDLINE | ID: mdl-32141415

ABSTRACT

Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.


Subject(s)
Atherosclerosis/enzymology , Ubiquitin-Protein Ligases , Ubiquitination , Endothelial Cells/metabolism , Humans , Inflammation , Lipid Metabolism , Myocytes, Smooth Muscle/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
17.
J Cell Physiol ; 236(4): 2333-2351, 2021 04.
Article in English | MEDLINE | ID: mdl-32875580

ABSTRACT

Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.


Subject(s)
Arteries/enzymology , Hypercholesterolemia/enzymology , Proprotein Convertase 9/metabolism , Vascular Diseases/enzymology , Animals , Anticholesteremic Agents/therapeutic use , Arteries/drug effects , Arteries/pathology , Gene Expression Regulation, Enzymologic , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Mutation , PCSK9 Inhibitors , Proprotein Convertase 9/genetics , Serine Proteinase Inhibitors/therapeutic use , Signal Transduction , Vascular Diseases/drug therapy , Vascular Diseases/genetics , Vascular Diseases/pathology
18.
Curr Med Chem ; 28(5): 1025-1041, 2021.
Article in English | MEDLINE | ID: mdl-32368969

ABSTRACT

Coronary heart disease (CHD) is closely related to hypercholesterolemia, and lowering serum cholesterol is currently the most important strategy in reducing CHD. In humans, the serum cholesterol level is determined mainly by three metabolic pathways, namely, dietary cholesterol intake, cholesterol synthesis, and cholesterol degradation in vivo. An intervention that targets the key molecules in the three pathways is an important strategy in lowering serum lipids. Statins inhibit 3-hydroxyl-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) to reduce low-density lipoprotein (LDL) by about 20% to 45%. However, up to 15% of patients cannot tolerate the potential side effects of high statin dosages, and several patients also still do not reach their optimal LDL goals after being treated with statins. Ezetimibe inhibits cholesterol absorption by targeting the Niemann-Pick C1-like 1 protein (NPC1L1), which is related to cholesterol absorption in the intestines. Ezetimibe lowers LDL by about 18% when used alone and by an additional 25% when combined with statin therapy. The proprotein convertase subtilisin/kexin type 9 (PCSK9) increases hepatic LDLR degradation, thereby reducing the liver's ability to remove LDL, which can lead to hypercholesterolemia. Evolocumab, which is a PCSK9 monoclonal antibody, can reduce LDL from baseline by 53% to 56%. The three drugs exert lipid-lowering effects by regulating the three key pathways in lipid metabolism. Combining any with the two other drugs on the basis of statin treatment has improved the lipid-lowering effect. Whether the combination of the three musketeers will reduce the side effects of monotherapy and achieve the lipid-lowering effect should be studied further in the future.


Subject(s)
Anticholesteremic Agents , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Antibodies, Monoclonal, Humanized , Anticholesteremic Agents/therapeutic use , Cholesterol , Cholesterol, LDL , Ezetimibe/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Proprotein Convertase 9
19.
J Med Internet Res ; 22(8): e19995, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32716897

ABSTRACT

BACKGROUND: Since January 2020, the coronavirus disease (COVID-19) swept over China and then the world, causing a global public health crisis. People's adoption of preventive and intervening behaviors is critical in curbing the spread of the virus. OBJECTIVE: The aim of this study is to evaluate Chinese people's adoption of health behaviors in responding to COVID-19 and to identify key determinants for their engagement. METHODS: An anonymous online questionnaire was distributed in early February 2020 among Mainland Chinese (18 years or older) to examine their engagement in preventive behaviors (eg, frequent handwashing, wearing masks, staying at home) and intervening behaviors (eg, advising family to wash hands frequently), and to explore potential determinants for their adoption of these health behaviors. RESULTS: Out of 2949 participants, 55.3% (n=1629) reported frequent engagement in preventive health behaviors, and over 84% (n=2493) performed at least one intervening health behavior. Greater engagement in preventive behaviors was found among participants who received higher education, were married, reported fewer barriers and greater benefits of engagement, reported greater self-efficacy and emotional support, had greater patient-centered communication before, had a greater media literacy level, and had greater new media and traditional media use for COVID-19 news. Greater engagement in intervening behaviors was observed among participants who were married, had lower income, reported greater benefits of health behaviors, had greater patient-centered communication before, had a lower media literacy level, and had a greater new media and traditional media use for COVID-19 news. CONCLUSIONS: Participants' engagement in coronavirus-related preventive and intervening behaviors was overall high, and the associations varied across demographic and psychosocial variables. Hence, customized health interventions that address the determinants for health behaviors are needed to improve people's adherence to coronavirus-related behavior guidelines.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus/pathogenicity , Health Behavior/physiology , Pneumonia, Viral/epidemiology , COVID-19 , China , Cross-Sectional Studies , Female , Humans , Male , Mass Media/statistics & numerical data , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
20.
Clin Chim Acta ; 506: 191-195, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32220421

ABSTRACT

Oral infections are common among individuals of all ages and can activate local and systemic inflammation. The inflammatory response plays an important role in atherosclerosis. An increasing number of studies have reported an association between oral pathogen infection and atherosclerotic coronary heart disease. For instance, epidemiological studies support the positive correlation between oral infections and atherosclerosis. The presence of oral pathogens in human atherosclerotic plaques has been detected by multiple methods, and oral infections promote atherosclerosis in animal experiments. Various mechanisms are involved in oral infections, thereby promoting atherosclerosis. First, oral infections can trigger the local and systemic inflammatory response, causing vascular endothelial damage. Oral-derived pathogens that enter atherosclerotic plaque can activate macrophages and cause an intra-plaque inflammatory response. Second, oral infections can promote intra-plaque macrophage cholesterol accumulation and foam cell formation. Third, oral infections can regulate plasma lipid levels, thereby increasing atherogenic lipid low-density lipoprotein and triglyceride levels. Although atherosclerosis caused by oral infections is currently studied, the precise mechanism remains to be further explored. The rise of gut microbiota research also makes the relationship between oral microbiota and disease, especially the relationship with coronary heart disease, worthy of attention and in-depth research.


Subject(s)
Atherosclerosis/microbiology , Microbiota , Mouth/microbiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...