Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Chemosphere ; : 143432, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357655

ABSTRACT

To address the limitations inherent in both sulfur autotrophic denitrification (SAD) and heterotrophic denitrification (HD) processes, this study introduces a novel approach. Three carbon sources (glucose, methanol, and sodium acetate) were fed into the SAD system to facilitate the transition towards mixotrophic denitrification. Batch experiments were conducted to explore the effects of influencing factors (pH, HRT) on the denitrification performance of the mixotrophic system. Carbon source dosages were varied at 12.5%, 25%, and 50% of the theoretical amounts required for HD (18, 36, and 72 mg/L, respectively). The results showed distinct optimal dosages for each of the three organic carbon sources. The mixotrophic system, initiated with sodium acetate at 25% of the theoretical value, demonstrated the highest denitrification performance, achieving NO3--N removal efficiency of 99.8% and the NRR of 6.25 mg/(L·h). In contrast, the corresponding systems utilizing glucose (at 25% of the theoretical value) and methanol (at 50% of the theoretical value) achieved lower removal efficiency of 77.0% and 88.4%, respectively. The corresponding NRRs were 4.85 mg/(L·h) and 5.65 mg/(L·h). Following the transition from SAD to a mixotrophic system, the abundance of Thiobacillus decreased from 78.5% to 34.4% at the genus level, and the mixotrophic system cultivated a variety of other denitrifying bacteria (Thauera, Aquimonas, Azoarcus, and Pseudomonas), indicating an enhanced microbial community structure diversity. The established artificial neural network (ANN) model accurately predicted the effluent quality of mixotrophic denitrification, which predicted values closely aligning with experimental results (R2 > 0.9). Furthermore, initial pH exerted greater relative importance for COD removal and sulfur conversion, while the relative importance of HRT was more pronounced for NO3--N removal.

2.
Int J Biol Macromol ; 280(Pt 1): 135491, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255885

ABSTRACT

Functional hydrogel sensors have shown explosive growth in the health and medical fields. However, the uniform adhesion and the complicated polymerization process of hydrogels seriously hinder their further development. Herein, inspired by the layered structure of human skin, we prepare a Janus gel using in-situ polymerization. Based on the lignin-Fe3+ dual catalytic system, the rapid polymerization of the gel was achieved at room temperature. By tailoring the mass ratio of lignin and Fe3+ in the precursor, the adhesion of the upper and bottom layers can be easily adjusted. In addition, hydrophobic association is introduced into the upper layer to improve the gel's mechanical properties. The obtained asymmetric bilayer gel has a significant difference in adhesion (7 times), and exhibits excellent mechanical properties in the elongation at break (1437 %) and the breaking strength (463.2 kPa). Moreover, the bilayer gel also has good freezing and UV resistance. We use the bilayer gel as a wearable strain sensor, which shows a wide strain detection range of 0-800 % (maximum gauge factor = 5.3). The proposed simple strategy avoids UV irradiation and heating processes, which provides a new idea for the rapid polymerization of multifunctional Janus hydrogels with adjustable performances.

3.
J Hazard Mater ; 478: 135430, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39178773

ABSTRACT

The intensive use of various antibiotics for clinical and agricultural purposes has resulted in their widespread use in wastewater treatment plants. However, little research has been conducted on the effects of antibiotics on nitrite accumulation, antibiotic degradation pathways, or the microbial community structure in nitrification systems. In this study, a laboratory-scale sequencing batch reactor was used to treat wastewater containing cefalexin (CFX) at different doses (5, 10, 15, and 20 mg/L). The results showed that the nitrification performance was gradually inhibited with increasing CFX concentration. Ammonia-oxidizing bacteria (AOB) are more tolerant to CFX than nitrite-oxidizing bacteria (NOB). Under 15 mg/L of CFX, NOB were completely suppressed, whereas AOB were partially inhibited, as evidenced by an ammonium removal efficiency of 60 % and a 90 % of nitrite accumulation ratio. The partial nitritation was achieved. CFX can be degraded into 2-hydroxy-3phenylpyrazine and cyclohexane through bacterial co-metabolism, and CFX degradation gradually diminishes with decreasing nitrification performance. The abundance of Nitrospira gradually decreased with increasing CFX concentration. Ferruginibacter, Hydrogenophaga, Thauera, and Pseudoxanthomonas were detected at relative abundances of 13.2 %, 0.4 %, 0.9 %, and 1.3 %, respectively, indicating their potential roles in antibiotic degradation. These findings provide insight into the interactions between antibiotics and microbial communities, which are beneficial for a better understanding of antibiotic degradation in nitrification systems.


Subject(s)
Anti-Bacterial Agents , Cephalexin , Nitrification , Nitrites , Water Pollutants, Chemical , Nitrification/drug effects , Cephalexin/metabolism , Nitrites/metabolism , Nitrites/chemistry , Anti-Bacterial Agents/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Bacteria/drug effects , Wastewater , Bioreactors , Waste Disposal, Fluid/methods
4.
Soft Robot ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38386561

ABSTRACT

Soft robotics promises to achieve safe and efficient interactions with the environment by exploiting its inherent compliance and designing control strategies. However, effective control for the soft robot-environment interaction has been a challenging task. The challenges arise from the nonlinearity and complexity of soft robot dynamics, especially in situations where the environment is unknown and uncertainties exist, making it difficult to establish analytical models. In this study, we propose a learning-based optimal control approach as an attempt to address these challenges, which is an optimized combination of a feedforward controller based on probabilistic model predictive control and a feedback controller based on nonparametric learning methods. The approach is purely data-driven, without prior knowledge of soft robot dynamics and environment structures, and can be easily updated online to adapt to unknown environments. A theoretical analysis of the approach is provided to ensure its stability and convergence. The proposed approach enabled a soft robotic manipulator to track target positions and forces when interacting with a manikin in different cases. Moreover, comparisons with other data-driven control methods show a better performance of our approach. Overall, this work provides a viable learning-based control approach for soft robot-environment interactions with force/position tracking capability.

5.
Nanoscale ; 15(44): 17793-17807, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37916998

ABSTRACT

Superhydrophobic surfaces have attracted broad attention because of their unique water repellency but are restricted by poor wear resistance, weak adhesion to the substrate, and complex fabrication processes. Herein, a double-layer coating strategy consisting of the amino fluorine-silicone resin/epoxy resin (AFSR/EP) system is created. The system features a high hardness and transparent hydrophobic interface adhesive layer through the amine-epoxy "click" chemical reaction. The environmentally friendly resin system and low-cost nano-silica particles (n-SiO2) are composited and sprayed onto the substrate surface to form a superhydrophobic layer with outstanding robustness and excellent environmental stability. The prepared AFSR/EP@n-SiO2 composite coatings have a water contact angle of 161.1° and a sliding angle of 3.4°, demonstrating high superhydrophobic properties. Benefitting from the complementary advantages of silicone/epoxy resin, the prepared composite coatings maintain remarkable water repellency after various harsh environmental tests, including cyclic mechanical abrasion and tape-stripping, acid-base (pH 1 and pH 14) treatment, 10 wt% NaCl (pH 7) salt solution immersion, temperature treatment, knife scratching, and long-term ultraviolet radiation treatment, showing reinforced mechanical robustness and durable anti-corrosion stability. Notably, surface hardness of 5H and optical transparency over 80% can be achieved. The simple method offers a novel approach for the large-scale preparation of multifunctional superhydrophobic coatings.

6.
World J Clin Cases ; 11(27): 6515-6522, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37900233

ABSTRACT

BACKGROUND: Non-liquefied multiple liver abscesses (NMLA) can induce sepsis, septic shock, sepsis-associated kidney injury (SA-AKI), and multiple organ failure. The inability to perform ultrasound-guided puncture and drainage to eradicate the primary disease may allow for the persistence of bacterial endotoxins and endogenous cytokines, exacerbating organ damage, and potentially causing immunosuppression and T-cell exhaustion. Therefore, the search for additional effective treatments that complement antibiotic therapy is of great importance. CASE SUMMARY: A 45-year-old critically ill female patient presented to our hospital's intensive care unit with intermittent vomiting, diarrhea, and decreased urine output. The patient exhibited a temperature of 37.8 °C. Based on the results of liver ultrasonography, laboratory tests, fever, and oliguria, the patient was diagnosed with NMLA, sepsis, SA-AKI, and immunosuppression. We administered antibiotic therapy, entire care, continuous renal replacement therapy (CRRT) with an M100 hemofilter, and hemoperfusion (HP) with an HA380 hemofilter. The aforementioned treatment resulted in a substantial reduction in disease severity scores and a decrease in the extent of infection and inflammatory factors. In addition, the treatment stimulated the expansion of the cluster of differentiation 8+ (CD8+) T-cells and led to the complete recovery of renal function. The patient was discharged from the hospital. During the follow-up period of 28 d, she recovered successfully. CONCLUSION: Based on the entire therapeutic regimen, the early combination of CRRT and HP therapy may control sepsis caused by NMLA and help control infections, reduce inflammatory responses, and improve CD8+ T-cell immune function.

7.
Sci Total Environ ; 904: 165979, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37543313

ABSTRACT

Microplastics, as global emerging pollutants, have received significant attention worldwide due to their ubiquitous presence in the rivers. However, there is still a lack of clarity on the occurrence, driving factors, and ecological risks of microplastics in rivers worldwide. In this study, a global microplastic dataset based on 862 water samples and 445 sediment samples obtained from 63 articles was constructed, which revealed the temporal and spatial distribution of abundance and morphological characteristics of microplastics in rivers across the globe. In global rivers, the abundance of MPs in both water and sediment spans across 10 and 4 orders of magnitude, respectively. The MP comprehensive diversity index based on the physical morphological characteristics of MPs indicated a significant positive correlation between the pollution sources of MPs in different environmental media. Based on the data was aligned to the full-scale MPs, a novel framework was provided to evaluate the ecological risk of MPs and the interaction effects between the influencing factors driving the distribution characteristics of MPs in rivers around the world. The results obtained demonstrated a wide variation in the key driving factors affecting the distribution of microplastics in different environmental media (water and sediment) in rivers globally. The diversity indices of the morphological characteristics of MPs in densely populated areas of lower-middle income countries in Asia were significantly higher, implying that the sources of microplastics in these regions are more complex and extensive. More than half of the rivers are exposed to potential ecological risks of MPs; however, microplastics may pose only immediate risks to aquatic species in Burigang River, Bangladesh. This can provide valuable insights for formulating more effective scientific strategies for the management of MP pollution in rivers.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Rivers , Risk Assessment , Water , Environmental Monitoring
8.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110884

ABSTRACT

Biochar is considered as a promising candidate for emerging sustainable energy systems and environmental technology applications. However, the improvement of mechanical properties remains challenges. Herein, we propose a generic strategy to enhance the mechanical properties of bio-based carbon materials through inorganic skeleton reinforcement. As a proof-of-concept, silane, geopolymer, and inorganic gel are selected as precursors. The composites' structures are characterized and an inorganic skeleton reinforcement mechanism is elucidated. Specifically, two types of reinforcement of the silicon-oxygen skeleton network formed in situ with biomass pyrolysis and the silica-oxy-al-oxy network are constructed to improve the mechanical properties. A significant improvement in mechanical strength was achieved for bio-based carbon materials. The compressive strength of well-balanced porous carbon materials modified by silane can reach up to 88.9 kPa, geopolymer-modified carbon material exhibits an enhanced compressive strength of 36.8 kPa, and that of inorganic-gel-polymer-modified carbon material is 124.6 kPa. Moreover, the prepared carbon materials with enhanced mechanical properties show excellent adsorption performance and high reusability for organic pollutant model compound methylene blue dye. This work demonstrates a promising and universal strategy for enhancing the mechanical properties of biomass-derived porous carbon materials.

9.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986031

ABSTRACT

In the field of flexible electronics manufacturing, inkjet printing technology is a research hotspot, and it is key to developing low-temperature curing conductive inks that meet printing requirements and have suitable functions. Herein, methylphenylamino silicon oil (N75) and epoxy-modified silicon oil (SE35) were successfully synthesized through functional silicon monomers, and they were used to prepare silicone resin 1030H with nano SiO2. 1030H silicone resin was used as the resin binder for silver conductive ink. The silver conductive ink we prepared with 1030H has good dispersion performance with a particle size of 50-100 nm, as well as good storage stability and excellent adhesion. Additionally, the printing performance and conductivity of the silver conductive ink prepared with n,n-dimethylformamide (DMF): proprylene glycol monomethyl ether (PM) (1:1) as solvent are better than those of the silver conductive ink prepared by DMF and PM solvent. Cured at a low temperature of 160 °C, the resistivity of 1030H-Ag-82%-3 conductive ink is 6.87 × 10-6 Ω·m, and that of 1030H-Ag-92%-3 conductive ink is 0.564 × 10-6 Ω·m, so the low-temperature curing silver conductive ink has high conductivity. The low-temperature curing silver conductive ink we prepared meets the printing requirements and has potential for practical applications.

10.
Foods ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900576

ABSTRACT

With the aim to study the flavor characteristics of Ningxiang pigs (NX), Duroc (DC) pigs, and their crosses (Duroc × Ningxiang, DN), electronic nose and gas chromatography-mass spectrometry analysis were used to detect the volatile flavor substances in NX, DC, and DN (n = 34 pigs per population). A total of 120 volatile substances were detected in the three populations, of which 18 substances were common. Aldehydes were the main volatile substances in the three populations. Further analysis revealed that tetradecanal, 2-undecenal, and nonanal were the main aldehyde substances in the three kinds of pork, and the relative content of benzaldehyde in the three populations had significant differences. The flavor substances of DN were similar to that of NX and showed certain heterosis in flavor substances. These results provide a theoretical basis for the study of flavor substances of China local pig breeds and new ideas for pig breeding.

11.
Sci Rep ; 13(1): 1016, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653460

ABSTRACT

The rupture of coal pillar can lead to spontaneous combustion or collapse of goaf, which endangers the safety of workers. To explore the relationship between the crack depth of the coal structure and the signal received by the piezoelectric ceramic sensor, the output data of coal samples were analyzed by using the piezoelectric effect, combined with the experiment and ABAQUS simulation. Based on the signal amplitude, the output signal characteristics of the coal model with different crack depths were analyzed, and the evaluation index of coal crack cracking degree (Dc) was defined. The results show that the piezoelectric fluctuation method can effectively identify the local cracks of coal. When the distance between the lead Piezoelectric Transducer (PZT) patch and crack position is constant, the amplitude of the PZT patch output signal will decay with the deepening of the crack depth, while the value of increases with the increase of crack depth. This study provides a theoretical basis for mine disaster prevention and control.

12.
Rice (N Y) ; 15(1): 60, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36441396

ABSTRACT

BACKGROUND: Grain length (GL) that is directly associated with appearance quality is a key target of selection in rice breeding. Although abundant quantitative trait locus (QTL) associated with GL have been identified, it was still relatively weak to identify QTL for GL from japonica genetic background, as the shortage of japonica germplasms with long grains. We performed QTLs analysis for GL using a recombinant inbred lines (RILs) population derived from the cross between japonica variety GY8 (short grains) and LX1 (long grains) in four environments. RESULTS: A total of 197 RILs were genotyped with 285 polymorphic SNP markers. Three QTLs qGL5.3, qGL6.1 and qGL11 were detected to control GL by individual environmental analyses and multi-environment joint analysis. Of these, a major-effect and stable QTL qGL6.1 was identified to be a novel QTL, and its LX1 allele had a positive effect on GL. For fine-mapping qGL6.1, a BC1F2 population consisting of 2,487 individuals was developed from a backcross between GY8 and R176, one line with long grain. Eight key informative recombinants were identified by nine kompetitive allele specific PCR (KASP) markers. By analyzing key recombinants, the qGL6.1 locus was narrowed down to a 40.41 kb genomic interval on chromosome 6. One candidate gene LOC_Os06g43304.1 encoding cytochrome P450 (CYP71D55) was finally selected based on the difference in the transcriptional expression and variations in its upstream and downstream region. CONCLUSIONS: Three QTLs qGL5.3, qGL6.1 and qGL11 were identified to control grain length in rice. One novel QTL qGL6.1 was fine mapped within 40.41 kb region, and LOC_Os06g43304.1 encoding cytochrome P450 (CYP71D55) may be its candidate gene. We propose that the further cloning of the qGL6.1 will facilitate improving appearance quality in japonica varieties.

13.
Front Microbiol ; 13: 918986, 2022.
Article in English | MEDLINE | ID: mdl-35966711

ABSTRACT

A comprehensive understanding of rice cultivation techniques and organic amendments affecting soil quality, enzyme activities and bacterial community structure is crucial. We investigated two planting methods (direct seeding and transplanting) of paddy rice (Oryza sativa) and organic amendments with rice straw and biochar on crop yield and soil biological and physicochemical properties. Rhizosphere bacterial communities at the maturity stage of rice growth were characterized through high-throughput 16S rRNA sequencing. Soil biochemical properties and enzyme activity levels were analyzed. Grain yield of paddy rice with transplanting increased 10.6% more than that with direct seeding. The application of rice straw increased grain yield by 7.1 and 8.2%, more than with biochar and the control, respectively. Compared to biochar and the control, the application of rice straw significantly increased sucrase, cellulase, protease, organic carbon, available phosphorus, nitrate, and ammonium. The application of biochar increased microbial biomass nitrogen and carbon, urease, pH, available nitrogen, and available potassium compared to the application of rice straw and the control. Principal coordinate analysis and dissimilarity distances confirmed significant differences among the microbial communities associated with planting methods and organic amendments. Bacteroidetes, Nitrospirae, Firmicutes, and Gemmatimonadetes abundance increased with rice straw relative to biochar and the control. The biochar addition was associated with significant increases in Chloroflexi, Patescibacteria, Proteobacteria, and Actinobacteria abundance. Pearson's correlation analyzes showed that Chloroflexi, Bacteroidetes and Nitrospirae abundance was positively correlated with grain yield. The relative abundance of these bacteria in soil may be beneficial for improving grain yield. These results suggest that planting methods and organic amendments impact soil biochemical characteristics, enzyme activity levels, and microbial community composition.

14.
Signal Transduct Target Ther ; 7(1): 132, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461307

ABSTRACT

Understanding the decay and maintenance of long-term SARS-CoV-2 neutralizing antibodies in infected or vaccinated people and how vaccines protect against other SARS-CoV-2 variants is critical for assessing public vaccination plans. Here, we measured different plasm antibody levels 2 and 12 months after disease onset, including anti-RBD, anti-N, total neutralizing antibodies, and two neutralizing-antibody clusters. We found that total neutralizing antibodies declined more slowly than total anti-RBD and anti-N IgG, and the two neutralizing-antibody clusters decayed even more slowly than total neutralizing antibodies. Interestingly, the level of neutralizing antibodies at 12 months after disease onset was significantly lower than that at 2 months but more broadly neutralized SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Lambda (C.37). Significant immune escape by the Omicron variant (B.1.1.529) was also observed 2 months post-recovery. Furthermore, we revealed that a high percentage of virus-specific CD4+ T cells and cTfh1 were associated with a slower decline in humoral immunity, accompanied by higher levels of CXCR3 ligands such as CXCL9 and CXCL10, higher frequency of cTfh1, and lower levels of cTfh2 and cTfh17. Our data highlight the importance of coordinating T-cell and humoral immunity to achieve long-term protective immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , CD4-Positive T-Lymphocytes , Humans , T-Lymphocytes
15.
Small Methods ; 5(4): e2000842, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34927840

ABSTRACT

The interface contact between the active material and its neighboring metal electrodes dominates the sensing response of mainstream high-sensitivity piezoresistive pressure sensors. However, the properties of such interface are often difficult to control and preserve owing to the limited strategies to precisely engineer the surface structure and mechanical property of the active material. Here, a top-down fabrication method to create a grid-like polyurethane fiber-based spacer layer at the interface between a piezoresistive layer and its contact electrodes is proposed. The tuning of the period and thickness of the spacer layer is conveniently achieved by a programmable near-field electrospinning process, and the influence of the spacer structure on the sensing performance is systematically investigated. The sensor with the optimized spacer layer shows a widened sensing range (230 kPa) while maintaining a high sensitivity (1.91 kPa-1 ). Furthermore, the output current fluctuation of the sensors during a 74 000-cycle test is drastically reduced from 14.28% (without a spacer) to 3.63% (with a spacer), demonstrating greatly enhanced long-term reliability. The new near-field electrospinning-based strategy is capable of tuning sensor responses without changing the active material, providing a universal and scalable path to engineer the performances of contact-dominant sensors.

16.
PLoS One ; 16(12): e0260655, 2021.
Article in English | MEDLINE | ID: mdl-34855826

ABSTRACT

Timber linings are applied as primary supports in the tunnel fault and fracture zones of mines. These linings are essential to prevent broken rock from falling during the occurrence of exogenous fires. In this study, experiments and numerical simulations were carried out using a fire dynamics simulator to investigate the flame-spread rate, flame characteristics, smoke movement, and spread process of timber-lining fires under different wind speeds of 0, 0.25, 0.5, and 0.75 m/s. It was found that cross-section flame spreading follows the three-stage sidewall-ceiling-sidewall pattern. Moreover, the average flame-spread rate increases along the vertical flame-spreading direction and decreases when the flame reaches the timber-lining corners. Moreover, the flame lengths underneath the timber-lining ceiling in the x-direction are longer than those in the y-direction. As the wind speed increases, the normalized flame lengths R(f) in the two directions decrease, and the maximum temperature underneath the ceiling decreases. In addition, the maximum temperature in the three tunnel sections of interest is first recorded in the tunnel cross-section in the initial fire stage. Higher wind speeds correspond to farther distances of the maximum-temperature points of the three timber-lining sections from the fire source.


Subject(s)
Fires , Mining , Computer Simulation , Models, Theoretical , Smoke/analysis , Temperature
17.
Ann Transl Med ; 9(18): 1446, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733998

ABSTRACT

BACKGROUND: The rapid spread of coronavirus disease-19 (COVID-19) poses a global health emergency, and cases entering China from Russia are quite diverse. This study explored and compared the clinical characteristics and outcomes of severe and critically ill COVID-19 patients from Russia with and without influenza A infection, treated in a northern Chinese hospital (Russia imported patients). METHODS: A total of 32 severe and critically ill Russia-imported COVID-19 patients treated in the Heilongjiang Imported Severe and Critical COVID-19 Treatment Center from April 6 to May 11, 2020 were included, including 8 cases (group A) with and 24 cases (group B) without influenza A infection. The clinical characteristics of each group were compared, including prolonged hospital stay, duration of oxygen therapy, time from onset to a negative SARS-CoV-2 qRT-PCR RNA (Tneg) result, and duration of bacterial infection. RESULTS: The results showed that blood group, PaO2/FiO2, prothrombin time (PT), prothrombin activity (PTA), computed tomography (CT) score, hospital stay, duration of oxygenation therapy, Tneg, and duration of bacterial infection were statistically different between the two groups (P<0.05). Multivariant regression analysis showed that the Sequential Organ Failure Assessment (SOFA) score, C-reactive protein (CRP), and influenza A infection were factors influencing hospital stay; SOFA score, CRP, and CT score were factors influencing the duration of oxygenation therapy; PaO2/FiO2, platelet count (PLT), and CRP were factors influencing Tneg; and gender, SOFA score, and influenza A infection were factors influencing the duration of bacterial infection. CONCLUSIONS: Influenza A infection is common in Russia-imported COVID-19 patients, which can prolong the hospital stay and duration of bacterial infection. Routinely screening and treating influenza A should be conducted early in such patients.

18.
Sci Rep ; 11(1): 22185, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34773058

ABSTRACT

The application of straw and biochar can effectively improve soil quality, but whether such application impacts paddy soil bacterial community development remains to be clarified. Herein, the impacts of three different field amendment strategies were assessed including control (CK) treatment, rice straw (RS) application (9000 kg ha-1), and biochar (BC) application (3150 kg ha-1). Soil samples were collected at five different stages of rice growth, and the bacterial communities therein were characterized via high-throughput 16S rDNA sequencing. The results of these analyses revealed that soil bacterial communities were dominated by three microbial groups (Chloroflexi, Proteobacteria and Acidobacteria). Compared with the CK samples, Chloroflexi, Actinobacteria, Nitrospirae and Gemmatimonadetes levels were dominated phyla in the RS treatment, and Acidobacteria, Actinobacteria, Nitrospirae and Patescibacteria were dominated phyla in the BC treatment. Compared with the RS samples, Chloroflexi, Acidobacteria, Actinobacteria, and Verrucomicrobia levels were increased, however, Proteobacteria, Gemmatimonadetes, Nitrospirae, and Firmicute levels were decreased in the BC samples. Rhizosphere soil bacterial diversity rose significantly following RS and BC amendment, and principal component analyses confirmed that there were significant differences in soil bacterial community composition among treatment groups when comparing all stages of rice growth other than the ripening stage. Relative to the CK treatment, Gemmatimonadaceae, Sphingomonadaceae, Thiovulaceae, Burkholderiaceae, and Clostridiaceae-1 families were dominant following the RS application, while Thiovulaceae and uncultured-bacterium-o-C0119 were dominant following the BC application. These findings suggest that RS and BC application can improve microbial diversity and richness in paddy rice soil in Northeast China.


Subject(s)
Bacteria , Charcoal , Microbiota , Oryza , Soil Microbiology , Soil/chemistry , Bacteria/classification , Bacteria/genetics , Biodiversity , Charcoal/chemistry , Organ Specificity , Oryza/chemistry , Phylogeny , Rhizosphere
19.
Nat Commun ; 12(1): 1724, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741972

ABSTRACT

T-cell immunity is important for recovery from COVID-19 and provides heightened immunity for re-infection. However, little is known about the SARS-CoV-2-specific T-cell immunity in virus-exposed individuals. Here we report virus-specific CD4+ and CD8+ T-cell memory in recovered COVID-19 patients and close contacts. We also demonstrate the size and quality of the memory T-cell pool of COVID-19 patients are larger and better than those of close contacts. However, the proliferation capacity, size and quality of T-cell responses in close contacts are readily distinguishable from healthy donors, suggesting close contacts are able to gain T-cell immunity against SARS-CoV-2 despite lacking a detectable infection. Additionally, asymptomatic and symptomatic COVID-19 patients contain similar levels of SARS-CoV-2-specific T-cell memory. Overall, this study demonstrates the versatility and potential of memory T cells from COVID-19 patients and close contacts, which may be important for host protection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory/immunology , SARS-CoV-2/immunology , Virus Diseases/diagnosis , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19/blood , Case-Control Studies , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology
20.
J Thorac Dis ; 12(5): 1811-1823, 2020 May.
Article in English | MEDLINE | ID: mdl-32642086

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been a global pandemic disease, with more than 4 million cases and nearly 300,000 deaths. Little is known about COVID-19 in patients with chronic obstructive pulmonary disease (COPD). We aimed to evaluate the influence of preexisting COPD on the progress and outcomes of COVID-19. METHODS: This was a multicenter, retrospective, observational study. We enrolled 1,048 patients aged 40 years and above, including 50 patients with COPD and 998 patients without COPD, and with COVID-19 confirmed via high-throughput sequencing or real-time reverse transcription-polymerase chain reaction, between December 11, 2019 and February 20, 2020. We collected data of demographics, pathologic test results, radiologic imaging, and treatments. The primary outcomes were composite endpoints determined by admission to an intensive care unit, the use of mechanical ventilation, or death. RESULTS: Compared with patients who had COVID-19 but not COPD, those with COPD had higher rates of fatigue (56.0% vs. 40.2%), dyspnea (66.0% vs. 26.3%), diarrhea (16.0% vs. 3.6%), and unconsciousness (8.0% vs. 1.7%) and a significantly higher proportion of increased activated partial thromboplastin time (23.5% vs. 5.2%) and D-dimer (65.9% vs. 29.3%), as well as ground-glass opacities (77.6% vs. 60.3%), local patchy shadowing (61.2% vs. 41.4%), and interstitial abnormalities (51.0% vs. 19.8%) on chest computed tomography. Patients with COPD were more likely to develop bacterial or fungal coinfection (20.0% vs. 5.9%), acute respiratory distress syndrome (ARDS) (20.0% vs. 7.3%), septic shock (14.0% vs. 2.3%), or acute renal failure (12.0% vs. 1.3%). Patients with COPD and COVID-19 had a higher risk of reaching the composite endpoints [hazard ratio (HR): 2.17, 95% confidence interval (CI): 1.40-3.38; P=0.001] or death (HR: 2.28, 95% CI: 1.15-4.51; P=0.019), after adjustment. CONCLUSIONS: In this study, patients with COPD who developed COVID-19 showed a higher risk of admission to the intensive care unit, mechanical ventilation, or death.

SELECTION OF CITATIONS
SEARCH DETAIL